
www.manaraa.com

Walden University

COLLEGE OF MANAGEMENT AND TECHNOLOGY

This is to certify that the doctoral dissertation by

Lawrence Day

has been found to be complete and satisfactory in all respects,

and that any and all revisions required by
the review committee have been made.

Review Committee
Dr. Raghu Korrapati, Committee Chairperson,

Applied Management and Decision Sciences Faculty

Dr. David Gould, Committee Member,
Applied Management and Decision Sciences Faculty

Dr. Aqueil Ahmad, University Reviewer

Applied Management and Decision Sciences Faculty

Chief Academic Officer

David Clinefelter, Ph.D.

Walden University
2011

www.manaraa.com

Abstract

The Integration of Software Quality into Software Project Management

By

Lawrence E. Day

M.B.A., Technology/Engineering Management, City University, 1988

B.S., Electrical Engineering, Worcester Polytechnic Institute, 1969

Dissertation Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

Applied Management and Decision Science

Walden University

February 2011

www.manaraa.com

Abstract

Billions of dollars have been lost in failed software development projects in the past 40

years. Although there are standard project management processes, the data indicate they

are inadequate when it comes to software projects. Standards are needed to produce

predictable repeatable results. The problem researched in this study was the lack of

understanding about how to measure real progress-to-date of a software project. The

purpose was exploring ways to communicate real status of a software development

project. The theory of software product quality provided the theoretical framework, the

methods of research, and the methods of analysis. The three research questions explored

effective ways to measure software project status by analyzing product quality without

adding communication barriers for senior management. An ex-post facto exploratory

research design was used. Data were collected from inspections of project requirements.

Data analysis used statistical process control (c- chart for defects), simulation, input

sampling techniques, and parametric analysis. The sample studied constituted the

requirements of a completed software project. The results showed that the Quality

Performance Index (QPI) method developed in this research did yield a quantitatively

significant indication of a project’s status. Implications for positive social change

included the development of more robust software with better quality and cost

management resulting in greater customer satisfaction and savings to stakeholders in

industry and taxpayers for government projects.

www.manaraa.com

www.manaraa.com

The Integration of Software Quality into Software Project Management

By

Lawrence E. Day

M.B.A., Technology/Engineering Management, City University, 1988

B.S., Electrical Engineering, Worcester Polytechnic Institute, 1969

Dissertation Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

Applied Management and Decision Science

Walden University

February 2011

www.manaraa.com

UMI Number: 3440422

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 3440422

Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

www.manaraa.com

Dedication

“Study to shew thyself approved unto God, a workman that needeth not to be ashamed,

rightly dividing the word of truth.” – II Timothy 2:15

To my wife, Kyung Ae Day, without whose love, support, and encouragement I

would not have been able to allocate the time, energy and financial resources to complete

this course of study. To my Lord who sustains me daily; who provides my Eternal hope

and is the author and finisher of personal change and hence positive social (cumulative

personal) change. He worked in the life of John Newton to change him from a slave

trader to a preacher and a major figure in the non violent abolishment of slavery within

the British Empire. Amazing Grace is a poem he wrote to document the personal change

that ultimately resulted in one of the greatest positive social changes in modern history.

Amazing Grace

Amazing Grace, how sweet the sound,
That saved a wretch like me.

I once was lost but now am found,
Was blind, but now I see.

T'was Grace that taught my heart to fear.
And Grace, my fears relieved.

How precious did that Grace appear
The hour I first believed.

Through many dangers, toils and snares
I have already come;

'Tis Grace that brought me safe thus far
and Grace will lead me home.

The Lord has promised good to me.
His word my hope secures.

He will my shield and portion be,
As long as life endures.

www.manaraa.com

Yea, when this flesh and heart shall fail,
And mortal life shall cease,

I shall possess within the veil,
A life of joy and peace.

When we've been here ten thousand years
Bright shining as the sun.

We've no less days to sing God's praise
Than when we've first begun.

www.manaraa.com

Acknowledgments

In chronological order I would like to acknowledge Dr. Larry Beebee who

encouraged me to enroll in Walden and was actively concerned about my successful

progression through the curriculum. Dr. Raghu Korrapati became my faculty mentor and

my dissertation chair. His academic and industry background provided just the mix of

viewpoints that fit with my background. He used some of the best research practices of

industry to help ground the students in making their academic activities meaningful. His

guidance and friendship has been a constant for excellence and professionalism

throughout my entire Walden journey. The Walden faculty and administration have

taken seriously the challenge of making virtual study and accomplishment successful.

They have made distance learning personal for the student and provided a sense of

community despite a lack of physicality of the university. My Director, Curtis Banks,

provided the real-world social change problem that became the basis for this dissertation

study. He and his successor, Susan Gellatly, provided the resources and support

necessary for the successful execution and completion of the study. As a member of my

dissertation committee, Dr. David Gould provided invaluable personal insight and

direction in allowing me to successfully complete this dissertation.

www.manaraa.com

TABLE OF CONTENTS

Chapter 1..1

Statement of the Problem...4

Purpose of the Study ..6

Nature of the Study ..7

Theoretical Framework..8

Scope of the Study ...10

Limitations of the Study...10

Assumptions...11

Definition of Terms..11

Research Questions..16

Significance of the Study...17

Implications for Social Change..18

Summary ..18

Chapter 2: Literature Review...20

Literature Research Statistics...24

Quality Models...27

Comparing and Contrasting Characteristics of Quality Models 28

Quantitative Analysis of Quality Models ..34

Software Development Process Models/Methodologies ...34

Comparing and Contrasting Software Development Process

Methodologies... 35

Quantitative Analysis of Methodology Models...37

i

www.manaraa.com

Summary of Model Quantification Analysis ...38

Measurement..39

Measures and Metrics Common Definition.. 39

Software Measurement ... 42

Components of Software Measurement (SML, 2004).. 42

Goal/Question/Metric (GQM) ...44

Software Development Process Metrics ..46

SEI Goal Driven Software (DOD).. 46

Software Inspections..47

Overview... 47

The Inspection Process ... 48

Defect Detection ... 49

Defect Density .. 49

Process Improvement.. 52

Additional Innovations in Inspections .. 52

Summary ... 54

Earned Value Management (EVM) ...54

EVM Overview... 54

EVM Background ... 55

EVM Key Components... 56

Graphics .. 58

Further Refinements of CPI and SPI .. 60

Defect Performance Index (DPI) .. 61

ii

www.manaraa.com

Performance-Based- Earned Value Management... 61

Comparison and Contrast of Quality Project Management Approaches62

Conclusion ...65

Summary ..67

Chapter 3: Methodology ..69

Research Design...69

Quantitative Approach.. 69

Population ... 71

Reliability.. 72

Validity ... 73

Data Collection ... 74

Data Analysis .. 74

Sampling ... 76

Sample validity ... 79

EVM Methodology ..79

Additional Factor Inputs, Equations and Quality Component of EVM.......................80

Summary ..80

Chapter 4: Results ..81

Results of Data Analysis..82

Analysis of Literature Search...82

EPI Analysis.. 83

Simulation Parametric Data ...86

Independent Variables (IV)... 86

iii

www.manaraa.com

Dependent Variables (DV) ... 88

Status Reporting – Project vs. QPI Method...90

Research Tools and Data Gathering ..91

Project Document Deliverable Selection Criteria... 91

Macroscope Requirements Construct ... 91

Data Collection Process .. 92

The Parametric Equation for Projected Project Impact ...98

Defects Variables - Quality... 99

Effort Variables - Schedule... 100

Effort Variables - Cost .. 101

Validation of the Agile Inspection Methodology ..101

National Institute of Standards and Technology (NIST) Defects Model 101

Project Defects Data ... 101

NIST Defects Model Predictions of Requirements Defects 102

NIST Defects Model Compared to the Agile Inspection Methodology 102

QPI method Predictions verses Actual Project Schedule Performance103

Actual Project Schedule.. 103

Project Actual Schedule Performance .. 104

Research Questions Findings...105

Research Question 1 ... 105

Research Question 2 ... 107

Research Question 3 ... 108

Conclusions..109

iv

www.manaraa.com

Summary ..109

Chapter 5: Summary, Conclusions and Suggestions for Further Research111

General Research Conclusions ..111

Application Development Significance and Implications ...112

Agile Inspections .. 112

QPI Method... 113

Management Significance and Implications..113

QPI Method... 113

Executive Communications .. 114

Potential for Further Research ...114

Research Question 1 ... 114

Research Question 2 ... 115

Research Question 3 ... 115

The Impact of the QPI Method and Its Influences on Social Change116

Summary ..117

References..118

Appendix A Tables ..131

Appendix B Figures ...146

Appendix C – Additional Variables and Equations...152

Appendix D – Quality Review Checklist – Requirements (Example)154

Appendix E Major Quality Models..155

Appendix F – Software Development Process Models/Methodologies162

Appendix G Metrics...165

v

www.manaraa.com

vi

Appendix H – Notification of Approval to Conduct Research – Lawrence Day173

Appendix I – Major Defects Requirements Checklist ...174

Appendix J – Boeing Co. Data Use Agreement ..175

Curriculum Vitae ...177

www.manaraa.com

List of Tables

Table 1. Recent Large Software Failures ... 3

Table 2Key Words by Literature Type .. 25

Table 3. Components of Software Measurement – Products .. 42

Table 4. Components of Software Measurement – Process.. 43

Table 5. Components of Software Measurement – Resources .. 43

Table 6. Error Source in On-Board Space Shuttle Software .. 51

Table 7. Agile Review/Extreme Inspection Sample Error Logging Results...................... 52

Table 8. Earned Value Element Relationships ... 56

Table 9. Contrast of EVM and QPI method.. 90

Table 10. Project Defect Density Expectations .. 96

Table 11. NIST Defect Model and Agile Inspections Methodology................................ 103

vii

www.manaraa.com

List of Figures

Figure 1. Annotated software development V model. Used with permission.................... 5

Figure 2. Software development V model with literature research elements added. Used

with permission... 21

Figure 3. Comparative quality models ... 33

Figure 4. Comparative methodology models. Used with permission. 37

Figure 5. Goal/questions/metrics methodology.. 45

Figure 6. EPI Pareto analysis... 65

Figure 7. Control chart - agile inspections defects per content page (DD) 95

Figure 8. Conceptual research process flow... 99

Figure 9. Project initial schedule and QPI predictions ... 104

Figure 10. Actual schedule history for the project under study 105

 viii

www.manaraa.com

 1

Chapter 1

Background of the Problem

The problem areas identified in the NATO report in 1969 were similar to ones

that appear in current publications almost 40 years later. The NATO report cited the

following software problem areas among others (Bauer, 1969):

• Achieving sufficient reliability in the data systems which are becoming

increasingly integrated into the central activities of modern society

• The difficulties of meeting schedules and specifications on large software

projects

• The education of software (or data systems) engineers

After almost 40 years of trying to solve these problem areas, software developers

were still encountering the same problems. It was estimated that in 1995 alone, that the

cost of software project cancellations and overruns in the United States was $140 billion,

which accounted for about 20% of total U.S. investment in software development and

acquisition (Tully, 2002). In the fall of 2004, the U.S. government had to cancel a very

high-profile project, a part of the FBI’s modernization program to fight the War on

Terror, and later admitted that nothing of the investment was salvageable (Ragavan &

Hook, 2005).

Software development and project management were examined during those 40

years. Many books and articles were published that describe the intricacies of how to

manage a software development project(from modeling to metrics, software and systems

analysis, requirements, project management and quality) , by such luminaries as Boehm

www.manaraa.com

 2

(2003, 2000, 1989, 1981), Gilb (2005, 1993, 1988), and DeMarco (2006, 2003, 2002,

1997, 1987, 1986, 1979). Two other major sources of scholarship and practical industry

sharing were the IEEE Computer Society and the Association for Computing Machinery

Digital Library. In addition, the Project Management Institute (PMI) developed a

professional certification (Project Management Professional) in an attempt to develop a

standardized profession of project manager. This search for excellence in software

development has been systemic to the profession.

Thirty-seven years after the NATO report (Bauer, 1969), a $170 million

government project involving the construction of an integrated data networking system

was a total failure (Ragavan & Hook, 2005). According to FBI Director Mueller, the

Virtual Case File (VCF) system was plagued by a series of management failures at FBI

headquarters (Ragavan & Hook, 2005). Software and IT were taking up, on average, 5%

of companies’ revenues (Charette, 2005). Some examples of the colossal software

development failures over the last few years are listed in Table 1 (Charette, 2005).

www.manaraa.com

 3

Table 1. Recent Large Software Failures

Recent Large Software Failures

Year Company Loss Outcome (Cost in U.S. $)
2005 Hudson Bay Co [Canada] Inventory system problems - $33 million.
2005 UK Inland Revenue Software errors - $3.4 billion overpayment.
2004 Avis Europe PLC [UK] ERP cancelled - $55.4 million.
2004 Ford Motor Co. Purchasing system cancelled - $400 million.
2004 J. Sainsbury PLC [UK] SCM cancelled - $527 million.
2004 Hewlett-Packard Co. ERP system - $160 million loss.
2004 AT&T Wireless CRM upgrades - revenue loss of $100 million.
2002 McDonalds Corp. Information-purchasing canceled - $170

million.
2002 Sydney Water Corp. [AU] Billing system cancelled - $33.2 million.
2002 CIGNA Corp. CRM problems - $445 million.
2001 Nike Inc SCM problems - $100 million
2001 Kmart. Corp. SCM cancelled - $130 million.
2000 Washington, D.C. City payroll system abandoned - $25 million.
1999 United Way Admin processing cancelled - $12 million.
1999 State of Mississippi Tax system cancelled - $11.2 million.
1999 Hershey Foods Corp. ERP problems - $151 million.
1998 Snap-on Inc Order-entry system problems - $50 million.
1997 Internal Revenue Service Tax modernization effort cancelled - $4 billion.
1997 State of Washington DMV system cancelled - $40 million.
1997 Oxford Health Plans Inc. Billing/claims problems –stock loss of $3.4

billion.
1996 Arianespace [France] Software errors – loss of $350 million Ariane

5.
1996 FoxMeyer Drug Co. $40 million ERP system bankrupts company.
1995 Toronto Stock Exchange Electronic trading cancelled - $25.5 million.
1994 FAA AAS cancelled - $2.6 billion.
1994 State of California DMV system cancelled - $44 million.
1994 Chemical Bank Software error - $15 million erroneous

accounting.
1993 London Stock Exchange Taurus system cancelled - $600 million.
1993 Allstate Insurance Co. Office automation cancelled - $130 million.
1993 London Ambulance Service Dispatch system cancelled twice - $26 million.
1993 Greyhound Lines, Inc Bus reservation system - $61 million.
1992 AMR (American Airlines) Reservation system cancelled - $165 million.

www.manaraa.com

 4

Statement of the Problem

Traditionally project status has been measured on budget, scope and time. But

there is a lack of academic research on how to accurately measure project status, the

problem researched in this study. This case examined why measurements are inaccurate

or incomplete and what could be done about it. This research addressed the lack of

academic research in communicating true software status to the project sponsors during

the system development life cycle. The quality that was researched in this study, while

related to product and software development methodology, was not product quality, but

quality of the status of the project management process. Product quality was studied to

determine its effect on project status, or project quality.

www.manaraa.com

 5

Project status reported based on software
development deliverables completion status

Project status reported based
on testing completion status

Figure 1. Annotated software development V model. Used with permission.

Prior to the completion of unit test, project status was determined by the status of

the software deliverables, as reported by the software development personnel creating the

deliverables. This status is shown by the green line in Figure 1. When the product

moved into the test region, shown by the red line in Figure 1, the project status was

reported based on the progress made in the completion of the testing scheduled. The test

group was often different from the development group and the project status changed

from the quantitative based subjective status (when was a deliverable complete?) to the

quantitative based objective status (the test either passed or failed). The transition in

project status accounting could often produce dramatic changes in project status, which

were usually not positive producing surprise and consternation among executives and

project managers. The study tried to determine if there is additional information that

www.manaraa.com

 6

could be applied to the project status in the development phase (green line) that would

make the status transition to the testing phase (red line) more congruent.

Purpose of the Study

In light of the previously identified continuing losses in IT endeavors, the purpose

of the study was to make a scholarly contribution to the scientific body of knowledge on

how to accurately measure and communicate software development project status. The

study determined that a contribution could be made to the existing scientific body of

knowledge that would provide new information about how to effectively communicate, in

simple terms, the true software project status in development projects. The study

analyzed how the professional literature and current body of knowledge supported the

research for an integrated solution of quality into the software development project

management process. The study developed an enhanced method of software project

status that improved the capability of successful software project completion and

successfully communicated to senior management.

The study developed an approach to communicating the measurement of project

status that executive management could readily incorporate without having to develop

any additional software project management understanding. Industry research confirmed

that executives should be skeptical of favorable status reports. Major projects with large

software components, such as the Airbus 380 2-year delivery slide and the Denver airport

baggage handling 16-month-opening slide, continued to show bias in their status

reporting (Shore, 2008). The higher risk projects required executives to concentrate on

www.manaraa.com

 7

decreasing bias so that they could more accurately assess the project status (Snow & Keil,

2001). This study provided an early indicator to offset executive bias.

Nature of the Study

This study used a quantitative, post-facto, exploratory design (see chapter 3 for

details). The study consisted of a literature search and analysis of software quality

measurement methodologies and software project management using earned value

management (EVM) to evaluate them with respect to integration or common approach to

common solutions. The study was quantitative in nature in that an update, based on the

literature search, of the EVM methodology to add a quality component to the already

defined modes of cost and schedule was proposed. This updated method was then the

subject of research on a completed software project to determine the effectiveness of the

methodology against already known project results.

An additional aspect of the study was the specific choice of the EVM

methodology as a proposed method to add a quality component as opposed to developing

a separate stand-alone quality component. The assumption was made, based on the

author’s years of experience in this field, that the best way to communicate was for the

software developers to change their communication style so that it lined up with senior

management rather than having Senior Management try to learn a new technical approach

to the management of software projects. In other words, senior managers were already

trained in the significance of EVM indications and were able to make correct project

deductions from the data presented. By incorporating a quality measure into the Earned

Value Management methodology, executives could make informed decisions about a

www.manaraa.com

 8

project based on the quality date without having learned and understood new project

management models and terms.

Theoretical Framework

In any project there were three major components: cost, schedule, technical

performance or quality, and risk (NASA, 2007). In EVM project status is reported in

only two of those components: cost and schedule (NASA, 2007). The projects cited in

Table 1 failed because of product quality either in requirements, design or

implementation.

The theory of software product quality provided the theoretical framework for the

study and the methods of research and analysis chosen for the study. Software quality

theory divided into two process phases: engineering and defect removal. The defect

removal phase consisted of review and testing. The engineering phase produced new

artifacts where defects are introduced (Alstad, 2004). The engineering phases were

sometimes called the defect injection phases by quality analysts (Alstad, 2004). The

axioms of software product quality included the following (Dromey, 1998):

1. Since software is composed of components, their choice, their tangible

intrinsic properties, their contextual properties and the way the components

are composed determines the quality of the software.

2. Software exhibits a set of quality attributes; it exhibits observable behaviors

and uses that correspond to the quality attributes.

3. Tangible quality-carrying properties of software components contribute to one

or more intangible, high level quality attributes of software.

www.manaraa.com

 9

4. Associated with each quality-carrying property of a component is a verifiable

empirical statement that links the property either to a software characteristic, a

behavior or a use, and then to a high level quality attribute.

In order for projects to be successful, the product they produce must have the

quality that meets the customer’s requirements: a verifiable empirical statement. The

general aims of quality theory are quality planning, quality assurance and quality control

(PMBOK, 2004). Upon examining the reasons software projects continue to fail, it

appears they do so because of badly defined system requirements and poor reporting of

the project's status (Charette, 2005).

The basis for this research was derived from the examination of the essential

elements necessary for a successful software development project and how to ensure they

are accurately communicated. The project quality indicators that executives relied on for

correct assessment of major projects were supplied by project management professionals

who relied on the product development professionals’ status of completed deliverables.

The quality of the deliverables was not an integrated indicator into project status, but was

instead, a separate component. The amount of quality control was established by the

project. Product quality was measured after completion and the projects status adjusted

accordingly.

Measures of software product quality were initially created by Fagan, one of the

founders of the IBM Quality Institute, for in-process software development (before

testing) in 1976 (Auruml, Petersson, & Wohlin, 2002). Over more than 30 years, the

database of literature supporting inspections properties and effectiveness grew to the

www.manaraa.com

 10

point where agile type inspection rules were available (Gilb, 2005). With this basis of

data and experience to use as a baseline for examination, the feasibility of quality

integrated into project management could be investigated.

The specific aspect of quality being investigated in this study was the aspect of

product quality as it applied to project quality while the product was in the development

phase of the project. The categories of software development quality were peer reviews,

acceptance sampling, product maturity, appraisal cost, internal failure cost, cost of non-

quality, cost of conformance, and cost of non-conformance (PMBOK, 2004). The

measurement of these areas of quality was not integrated into the cost and schedule

aspects of the software development project management. Thus, the input of quality

measurements was not directly coupled to project status, unlike cost and schedule, which

were in EVM (NASA, 2007).

Scope of the Study

The scope of the study included an IT project in a large aerospace organization.

The software development methodology lifecycle that was used by the project in the test

case being studied was the waterfall lifecycle with completion of deliverables used to

define the extent of activities. Lean, xTreme or Scrum methodology lifecycles were not

included. The project researched was one that had already been completed; it was not

influenced by any of the results of this study.

Limitations of the Study

This study was limited to software quality and software project management. The

sample size to test the research questions was small; more data is always desirable.

www.manaraa.com

 11

However, that was not a factor in validating the study’s veracity. The veracity of the

method was determined by an analytical logically sound analysis to reach a conclusion.

The examination of the data in the samples was non-intrusive to the project personnel.

This has no impact on the study, but if determining root causes of some of the sampling

data was desired then further effort outside of the study research would be required.

Assumptions

There were three major assumptions that were integral into the validity and value

of the study. The first was that the quality system level standards such as ISO-9000 and

software development process methodologies such as Capability Maturity Model®

Integration (CMMI) would continue to be required and a major organizational objective

for the foreseeable future. The second was that project management disciplines and

methodologies would continue to have increasing importance placed on them in the

business strategies of successful software development companies. The third, as

previously stated, was that communication about software from developers to senior

management was best accomplished by the developers adopting the communication

constructs of senior management rather than attempting to get senior management to

understand the intricacies of software development.

Definition of Terms

AAS: Advanced Automation System. A project for the Federal Aviation

Authority (FAA) to overhaul the US government’s air traffic control computer systems.

Capability Maturity Model® Integration: Capability Maturity Model® Integration

(CMMI) was a process improvement approach that provided organizations with the

www.manaraa.com

 12

essential elements of effective processes. It could be used to guide process improvement

across a project, a division, or an entire organization. Capability Maturity Model

Integration helped integrate traditionally separate organizational functions, set process

improvement goals and priorities, provided guidance for quality processes, and provided

a point of reference for appraising current processes (CMMI, 2007).

CobiT: A product of the Information Systems Audit and Control Association and

the IT Governance Institute. It was a set of guidelines for IT processes, practices and

controls that was mainly intended to be used for purposes of audit (ISACA, 2009).

CRM: Customer relations management system. It consisted of all processes a

company used to track and organize it contracts with its current and prospective

customers.

Descriptive Model: A descriptive model describes the behavior of elements in a

system where theory is adequate or nonexistent (Cooper and Schindler, 2003).

Direct metrics: Measurement of a process or product characteristic that does not

depend on the measurement of any other characteristic. Examples were the number of

faults in a product, number of hours spent during certain process, etc (SML, 2004).

DMV: Department of Motor Vehicles.

Earned Value Management: Earned Value Management (EVM) was a program

management technique (NASA, 2007). It integrated technical performance requirements,

resource planning, with schedules, and at the same time taking risk into consideration.

Earned Value (EV) was a project management methodology which integrated three

critical management elements of a project: scope, cost, and time (Anbari, 2003). Earned

www.manaraa.com

 13

Value was a management technique that related resource planning to schedules and to

technical performance requirements (Abba, 1997). There were four major steps

occurring in the Earned Value process. First all work was planned, budgeted and

scheduled in time phased planned value increments. Work was then earned as it was

performed. When complete, Planned Value was compared to Earned Value and any

difference was called schedule variance, and Earned Value was compared to Actual Cost

and any difference was called cost variance (Abba, 1997).

ERP: Enterprise resource planning software. ERP was a company-wide computer

software system used to manage and coordinate all the resources, information and

functions of a business from shared data stores.

Explicative Model: An explicative model extended the application of a well-

developed theory or improved the understanding of the theory’s key concepts.

FAA: Federal Aviation Administration.

Information Technology Infrastructure Library (ITIL): A set of IT processes and

best practices for IT service management and operations (ITIL, 2006). The ITIL

framework consisted of Service Support, Service Request Management, Incident

Management, Problem Management, Change Management, Release Management,

Configuration Management, Service Delivery, Service Level Management, Capacity

Management, Availability Management, Security Management, Software Asset

Management and Application Management.

Indirect metrics: Measurement of a process or product characteristic that involved

the measurement of one or more other characteristics, such as productivity, fault density,

www.manaraa.com

 14

etc. An indirect metric always contained a calculation of at least two other matrices

(SML, 2004).

In-Process: The state or condition of being executed but not completed. For

example, usually the quality of a product was measured after the product had been

created. Attempts at measurement of quality of a product while it was being created

would be in-process. Or if there were measurements of the progress of a phase of

software development, such as metrics of status of testing, then these metrics would be

labeled as in-process (SML, 2004).

Macroscope®: A software development methodology developed and supported

by Fujitsu (Macroscope, 2004).

Objective metrics: Absolute measures of the process or product, and count

attributes or characteristics in an objective way with numbers. Examples included

number of lines of code, number of defects, etc (SML, 2004).

People CMM (PCMM): The People Capability Maturity Model (People CMM)

was a framework that helped organizations successfully address their critical people

issues. Based on the best current practices in fields such as human resources, knowledge

management, and organizational development, the People CMM guided organizations in

improving their processes for managing and developing their workforces (PCMM, 2008).

Process metrics: Measurement of the characteristics of the overall development

process, such as number of defects found throughout the process during different kinds of

reviews (SML, 2004).

www.manaraa.com

 15

Product metrics: A measurement of an intermediate or final software

development product. Examples included size metrics, complexity metrics (SML, 2004).

Project Management Body of Knowledge (PMBOK): A Guide to the Project

Management Body of Knowledge (PMBOK® Guide) – Third Edition offered a set of

processes, generally recognized as good practice, which delivered results across

industries and organizations. With over two million copies in circulation, the PMBOK®

Guide was renowned as one of the leading tools for the profession and was an essential

reference for the library of every project management practitioner. The PMBOK® Guide

contained the fundamental, baseline practices that drove business results for any

organization – local, regional and global (PMBOK, 2004).

Quality: There were many aspects to quality; here are a few:

1. Software quality is the existence of characteristics of a product which can be

assigned to requirements (Petrasch, 1999).

2. Project Quality – consists of Quality Planning, Quality Assurance and Quality

Control (PMBOK, 2004).

3. Deming: .What the consumer says.

4. Juran: Fitness for use.

5. Crosby: Conformance to requirements.

6. Conformance to requirements–both stated and implied (McConnell, 2002).

SCM: Supply-chain management system.

www.manaraa.com

 16

 Simulation Model: A simulation model clarifies the structural relations of

concepts and attempts to reveal the process relations among them (Cooper and Schindler,

2003):

a. Static – A static model represents a system one point at a time.

b. Dynamic – A dynamic model represents the evolution of a system over time.

Subjective metrics: Measurements of a process or product that involve human,

subjective judgment & numbers. Examples of subjective metrics are expected

complexity and degree of conformance to coding standards (SML, 2004).

Test Phase: The phase of software development when the software developer has

completed coding and unit test of the product and it is being tested against functional and

performance requirements.

Research Questions

In software development projects that include IT, the project manager gets status

on the software deliverables from the development analysts in conjunction with the

software development methodology that was being employed. This research study

included three research questions on the problem of measuring the software’s in-process

(before testing) quality impact on the project cost and schedule:

1. What are the requirements for software quality during project execution, prior

to the test phase, which will produce reliable predictions of future impacts on

the cost and schedule commitments of the project?

2. What software quality measurement technique, currently available, that can be

adapted as an in-process (before testing) project quality measure?

www.manaraa.com

 17

3. What is the in-process (before testing) project impact, based on product

quality, that requires a communication mechanism or method not currently

part of the structure of established project management reporting practices?

Significance of the Study

This study was important because of the ever-increasing uses of large software-

based systems for warfighting, financial services, medical advancements, and

communications to name a few. As corporate software budgets increase, the need to use

corporate resources efficiently will increase. With the implementation of the Capability

Maturity Model® Integration (CMMI, 2007), an increase in the predictability of software

projects and the quality of their delivered products and services is expected.

There was a financial significance aspect to this study. If a method could be

developed that added confidence to software project management, such that software

project cancellations could be reduced by just 10%, it would amount to a savings of $14

billion in 1995 dollars alone (Tully, 2002).

There was a public policy significance aspect to this study. When major

implementations of public policy projects were delayed and/or overrun, the

implementation of public policy was impacted (Schmitt, 2005). Were the failure

catastrophic, the will to gather the resources to implement it might have been missing.

The FBI Virtual Case File system, for example, had to be started again from scratch.

During that time, none of the desired capability was available and the information

gathering and coordinating of the U. S. suffered. When the FBI put a new system put in

www.manaraa.com

 18

place, at a cost of $581 million, it was still not fully able to implement public policy at

the time it went operational (Schmitt, 2005).

This study had an implication for the software project management community

and discipline. The method developed in the study would validate the project status those

projects that were integrated in the aspects of cost, schedule and quality. The method

would also identify deficiencies in the project status of those projects that were not

integrating the three project disciplines.

Implications for Social Change

Governments, corporations and individuals were engaging in cyberspace warfare

and economic espionage. Internationally, foreign governments had hacked into U.S.

government agencies (Swartz, 2007) and private corporations (Roberts, 2010). The

ability of federal officials to respond to technology challenges and threats with on-

schedule and within-budget software applications would potentially free up resources for

their efficient use in other areas of social government policy implementation (Charette,

2005). The same efficient use of resources in the private sector would free up additional

capital that can be invested in the U.S. economy for job growth and sustained competitive

advantage (Charette, 2005).

Summary

The problem areas in software development that were identified almost 40 years

ago continue to occur today in spite of the effort of governments, industry and institutions

of higher education to understand and solve them. Billions of dollars have been lost in

failed software development projects. This chapter introduced the problem of lack of

www.manaraa.com

19

effective software quality project management. It identified a proposed relationship to be

developed between quality and project management.

The next chapter contains extensive research in literature on the various

approaches to software quality and examples of what were considered successful

methods of software project management. The research identified the complexity of the

subject and at the same time the lack of interaction in the project management domain.

Chapter 3 addresses the methodology used in this study, which includes the

research design and the type of data. In Chapter 4, research results with the use of the

Quality Performance Index (QPI) methodology are presented. Chapter 5 summarizes the

study and its findings.

www.manaraa.com

 20

Chapter 2: Literature Review

The purpose of the study was to make a scholarly contribution to the scientific

body of knowledge on how to accurately measure and communicate software

development project status. This chapter is a literature review, and is divided into the

following five major areas of the literature review because they constitute the successful

development of a software product and address aspects of the research questions:

1. Quality models (research questions 1 and 2)

2. Software development process models/methodologies (research questions 1

and 3)

3. Measurement and metrics (research questions 1 and 2)

4. Software inspections (research questions 2 and 3)

5. Earned value management (research questions 2 and 3).

The five areas of literature review are superimposed on the V model to

graphically depict their relationships to software development and each other. Figure 2 is

a standard software development generic V model (Macroscope, 2004). The descending

part of the V on the left represents the requirements through the code and unit test aspect

of software development. The ascending part of the V on the right represents the

verification and validation aspect of software development. The software development

models are shown across the top; they identify the specific activities and deliverables

during the software development life cycle. The quality models are shown on the left

side: they identify the processes followed during the software development life cycle.

The deliverables within the software development lifecycle are subject to inspections,

www.manaraa.com

 21

especially those in the early part of the cycle. The Earned Value project status was

performed as the project progressed through the lifecycle. The measures and metrics

were captured and analyzed during the various phases of the lifecycle. This study

focused on the left half of the V model, since, when the test phase is entered, the actual

status of the project became immediately evident.

Software Development Models

Etc.
Inspection

Earned Value Management (project status)

Measurement and Metrics

Quality
Models

Figure 2. Software development V model with literature research elements added. Used

with permission.

www.manaraa.com

 22

A model is the representative of a system to study some aspect of that system and

can be put into the following three major categories (Cooper & Schindler, 2003):

1. Descriptive: A descriptive model describes the behavior of elements in a

system where theory is inadequate or nonexistent

2. Explicative: An explicative model extends the application of well-developed

theories or improves the understanding of key concepts.

3. Simulation: A simulation clarifies the structural relations of concepts and

tempts to reveal the process relations among them. There are two kinds of

simulations: static and dynamic. A static simulation represents a system at

one point in time. A dynamic simulation represents the evolution of the

system over time.

This literature review identified existing elements of either a descriptive or

explicative model not yet correlated by the profession. Chapter 3 identified the type of

model and elements.

Software quality had been, and continues to be, an elusive goal for many

information technology (IT) organizations. Military and other government organizations

that contracted for large unprecedented software intensive systems had created software

development standards that had been regulatory for government contractors. As long ago

as 1968, NATO produced a report that identified problems and situations in software

development projects (Naur & Randell, 1968). Reading the report today, without

knowing the date or source, might have led the reader to believe that the subject was

today’s software development environment.

www.manaraa.com

 23

Software projects failed most often due to project management quality issues

(Jones, 2004). Unsuccessful projects’ problems with quality management included not

managing changing requirements, not allotting time for detailed requirements analysis,

and not allotting sufficient time for verification tasks including inspections, testing, and

defect repairs. There were many approaches being practiced with the intent of producing

quality in software development projects including the Capability Maturity Model –

CMM (CMM, 2007) and Capability Maturity Model Integration - CMMI (CMMI, 2007),

IT quality approaches such as Information Technology Infrastructure Library (ITIL), and

non-software specific Quality approaches like Total Quality Management – TQM (TQM,

2007) and ISO 9001 (Praxiom, 2007). There were software vendor methodologies and

tools such as Macroscope 4.5, Dynamic System Development Method (DSDM) and

CMD that attempted to apply consistent software project management disciplines. This

study categorized them in their effectiveness against various development scenarios.

Each was quantitatively analyzed with the resulting ratings for why they had been

chosen. The analysis summary was contained in this chapter and the detailed analysis was

documented in Appendix A.

There had been many approaches and methodologies for software quality

proposed. This research evaluated them for general patterns of applicability. A partial

result of the study provided a general indication of whether a particular type of quality

approach was well suited for implementation in a software development project. The

breadth of the software quality experience was captured both in quality models and

software development process methodologies.

www.manaraa.com

24

Approaches to quality in general and software quality in particular kept changing

with each new one being touted as the approach that would ultimately bring about good

quality. Many times the quality approaches were defined independently of the business

environment that they were supposed to help. The business executives, who control the

financing, had no reference point with which to determine the most cost effective method

of quality management to implement with respect to their business model.

The study, as a prerequisite to its findings, analyzed the quality approaches to

determine if there was a common way to classify them for easier reference and

applicability. Software quality has modeled both in models that deal strictly with the

software development process and in models that deal with quality in general, of which

software was one aspect of the total quality picture.

Literature Research Statistics

The literature research used the following databases:

1. Academic Search Premier

2. Business Source Premier

3. Computers and Applied Sciences Complete

4. Dissertations and Theses (ProQuest)

5. Military and Government Collection

6. NTIS – National Technical Information Service

7. Regional Business News

Table 2 is a cross-reference table of the type of references in this study and the

key words associated with them.

www.manaraa.com

 25

Table 2Key Words by Literature Type

Key Words by Literature Type

Key Words Journal Professional
Publication

Professional
Technical
Book

Gov't
Technical
Publication

Article Technical
Conference

Industry
Publication

Totals

Metrics 1 2 1 1 5 10
Earned Value 3 3 1 2 1 1 11
Software Quality 2 2 1 1 1 3 10
Software Metrics 2 3 3 2 1 11
Software Project
Failure

2 1 2 2 2 9

Software Project
Measurement

2 1 1 1 1 3 9

Software process
quality

4 1 3 4 1 2 4 19

Software Project
Success

3 1 6 3 1 3 17

Quality 1 2 1 3 2 9
Software
Inspections

4 1 1 1 2 9

Other 1 3 4 1 0 9
Totals 24 18 22 19 5 9 26 123

www.manaraa.com

 26

The literature that will be reviewed for the study problem area crossed the

boundaries that often separate academia, business and government. One of the best

examples of this phenomenon was the NASA/GSFC Software Engineering Laboratory

(SEL) in Maryland. It was a cooperative venture between NASA, a U.S. government

agency, the University of Maryland, an academic institution and CSC Corporation, a for-

profit, publicly owned corporation (Basili et al., 2002).

Another example of cooperation and collaboration was the Capability Maturity

Model® (CMM) and the Capability Maturity Model® Integration (CMMI) quality

model. Carnegie Mellon University, an academic institution, developed this model under

contract from the Department of Defense, a government agency. A separate research

department of the university was created called the Software Engineering Institute (SEI),

It was a federally funded research and development center that conducted software

engineering research in the following (SEI, 2009):

1. acquisition

2. Architecture and product lines

3. Process improvement

4. Performance measurement

5. Security

6. System interoperability

7. Dependability

www.manaraa.com

 27

A CMM Level 3, or sometimes Level 2, appraisal had become a minimum

requirement for private contractors to be eligible to receive certain government contracts

(SBA, 2009). The problem area of this study has been a concern of all three major areas

of research and innovation: academia, government and private industry. The literature

search into this problem area therefore would include review and knowledge transfer

from all three of these areas.

 Quality Models

Quality models are included in the literature search as part of answering research

questions 1 and 2. There are many quality models in use today. They include process

models, software models, and manufacturing models. This study researched the

following major quality models:

1. Total Quality Management (TQM)

2. Total Cost of Ownership (TCO)

3. Capability Maturity Model (CMM)

4. Capability Maturity Model Integration (CMMI)

5. Control Objectives for Information and Related Technology (Cobit)

6. Information Technology Infrastructure Library (ITIL)

7. Six Sigma

8. ISO 9001

9. Malcolm Baldrige National Quality Program

Appendix E contains detailed descriptions of each of the major quality models identified.

www.manaraa.com

 28

Comparing and Contrasting Characteristics of Quality Models

Capability Maturity Model had been in use for approximately 15 years and had

been formally adopted by the U.S. DoD (SEI, 2009). Every DOD contractor was

required to be at Capability Maturity Model Level 3 to qualify for a contract. Capability

Maturity Model Integration, recently unveiled by the Software Engineering Institute, was

a more comprehensive process-maturity model than Capability Maturity Model. It

combined Capability Maturity Model along with other disciplines in systems engineering

and product development. SEI would like to phase out Capability Maturity Model and

replace it with Capability Maturity Model Integration. It may do so as a research

institute, but Capability Maturity Model may already have an embedded market in

government contracts and methodologies.

J.P. Morgan Chase had combined Capability Maturity Model, within the Six

Sigma framework (Anthes, 2004). Some of the benefits cited for this combination

included the following: a 20% to 25% reduction in post implementation defects; reduced

efforts to support operational systems because they were more reliable with the result that

emergency releases to fix bugs had fallen by 60%; better management of globally

distributed projects because terminology and specifications were standardized, and better

performance from suppliers because requirements were better specified. One of the

challenges that lower maturity organizations had is that they did not appreciate the

necessity of taking measurements and performing the analysis on the data. There were

many large companies that had some business units or programs at Level 5, such as

www.manaraa.com

 29

Boeing and Motorola Inc. These companies also had business units or programs at Level

1. On the average, the business units or programs ranged between Levels 2 through 4.

Capability Maturity Model/Capability Maturity Model Integration was not alone

in this area. CobiT had well defined statements on what to do but they left it up to

implementers on how to do it. CobiT, as a quality model, had not been specifically

designed to apply to software development or IT services. This illustrated one of the

major challenges with quality models. They were very useful if it was understood what

they were trying to accomplish. For example, understanding CobiT would allow a

software development organization to apply it to a software project. But trying to apply it

without understanding could lead to a degraded situation. One of the other things that

CobiT lacked that Capability Maturity Model supplied was how to perform the desired

CQI (continuous quality/process improvement). CobiT was often used for IT

Governance and Audit functions (Anthes, 2004). The positive aspect of CobiT’s process

statements was that they are general enough to apply to a lot of situations and

organizations. The downside then was that it can take a lot of effort to modify them to fit

a particular organization’s processes. Lockheed Martin used CobiT as the overall quality

framework. They then applied Capability Maturity Model Integration (they have four

units at Capability Maturity Model Integration Level 5), Six Sigma, and ISO 9000

disciplines in various parts of their IT organization (Anthes, 2004).

ITIL, being process oriented, could also be integrated with some of the other

Quality Models such as Capability Maturity Model or Capability Maturity Model

Integration. ITIL was limited in that it did not address the development of quality

www.manaraa.com

 30

management systems. ITIL components were specific to IT and the processes associated

with delivering and managing services and capabilities; it was not focused on software

development. While the intent of ITIL was to standardize the use of IT processes and

create a common framework for IT organizations, it appeared that the implementation of

ITIL was still greatly individualized by organizations. This might, and did, result in

Capability Maturity Model being used solely by an IT software Development

organization and ITIL being used solely by IT Service Delivery organization both of

which are in the same larger IT organization, yet neither one references the other’s

quality model.

There is some industry data available that shows ITIL’s positive effect on IT

organizations. As an example, Capital One had reduced production incidents by 30% and

Severity 1 incidents by 92% since they implemented ITIL (Anthes, 2004). As stated

previously ITIL developed processes for delivering services in IT areas such as help desk,

applications support, software distribution and customer-contact system support. It also

had certain areas in its model that other models like Capability Maturity

Model/Capability Maturity Model Integration had as Configuration Management (CM).

CM was an ITIL process and was found in Capability Maturity Model as a Level 2 KPA.

ITIL would lead to a better understanding of the need to perform root-cause analysis. As

stated previously, immature organizations shied away from this activity so there might be

some benefit in maturity by implementing ITIL. While ITIL identified IT processes, ISO

9000 was more applicable to certification of processes.

www.manaraa.com

 31

Six Sigma was a quality model that incorporated statistical data techniques. To

reach a Six Sigma level of quality, data must be analyzed to determine the root causes of

business problems and solving them. By taking this approach, an organization could

come to an understanding of the complete cost of quality. The most obvious application

in IT was for common, repeatable activities such as call centers, help desk operations, or

ticketing systems. Six Sigma was a manufacturing model that had been applied to IT and

software. As such, the implementation would force organizations to be very specific on

their requirements and designs. To accomplish Six Sigma, the IT organizations had to

invest in measurement systems, use them, and maintain them. The best fit for Six Sigma

was in the testing environment, but it could be used in software development in

generating correct requirements. Using Six Sigma in requirements fit in with the

Capability Maturity Model construct for process maturity.

ISO was a requirement to do business in the European Union (EU) and it was a

diverse enough quality model that it had application enterprise wide. ISO 9001 applied

to software development and could also be applicable to IT operations and services. If an

IT organization desired to implement ISO, there had to be some tailoring done. ISO’s

approach was to have organizations implement their construct. It resulted in repeatability

and consistency of processes, but, and this is a very important but, it did guarantee the

quality of those processes or the products being produces. Unlike other quality models

that were useful for process analysis and root cause analysis, ISO was not used for such

things. The contrast was that Design for Six Sigma focused on individual projects. It

www.manaraa.com

 32

could fix problems, and it could find ways to improve, ISO 9000s approach was to create

more general and organizational level quality improvements.

The Baldrige quality program also did not address process details. It made

statements about quality, but did not identify methods to achieve quality. It dealt with the

entire organization; it did not specifically address IT at the highest levels. IT issues were

addressed, however, by the inclusion of the IT organization within the scope of the

Baldrige quality audit. Some organizations, such as Motorola, were using Capability

Maturity Model, Six Sigma, which they were credited with inventing, and the Baldrige

quality program. One of the uses of the Baldrige quality program was to generate

balanced scorecards for executives. Gartner had created a matrix of these quality models;

that matrix was shown in Figure 3, (Anthes, 2004). This matrix correlated the Quality

Models specifically to IT on one axis, and showed the abstraction, or organizational

detail to which the model pertains, on the other axis.

www.manaraa.com

 33

Process Model Selection Framework

Sour

ce: Gartner Inc., Stamford, Conn.

CMMI

Figure 3. Comparative quality models

The x-axis (Level of Abstraction) in Figure 3, had a direct bearing on the problem

statement in this research. Research question 3 addressed the concept of communication

of Quality within the context of project execution. The higher the level of abstraction,

the less detailed knowledge was needed about a particular instance of quality, and the

more applicable it was for communication to senior management and executives.

Executive scorecards were a subject of academic dialog on quality and performance, and

much of the latest technology for communication within organizations was adapted to

facilitate the ability to move data up the abstraction scale so it could be meaningfully

communicated to senior management (Lindeman et al., 1999).

www.manaraa.com

 34

Status of a software development project could be tracked using all the models

identified in Figure 3; however the level of communication of the details of the status

varied by model. The variety of the models was an indication of the attempts by

scientists and engineers over the past few decades to come to grips with the issue of poor

project performance in the development of software.

Quantitative Analysis of Quality Models

Figure 3 displayed the quality models analyzed in terms of monotonically

decreasing level of relevance to IT and monotonically increasing level of abstraction. By

converting these qualitative measures to quantitative equivalents and combining the

attributes of IT Relevance and Level of Abstraction, a composite index could be

produced. One way of perceiving the intersection of relevance and abstraction would be

to identify usefulness from the point of view of a quality practitioner. To capture this

viewpoint, a composite indicator had been created - the Quality Usability Index (QUI).

The generation of a QUI was tabulated in Table A-1.

Software Development Process Models/Methodologies

Software development process models/methodologies are included in the

literature search as part of answering research questions 1 and 3. Software development

process models/methodologies typically had taken many of the concepts from the quality

models and attempted to implement methodologies that capture the critical aspects of the

quality models. This study researched the following major software development process

models/methodologies:

1. Fujitsu Macroscope

www.manaraa.com

 35

2. CMD Symphony

3. Dynamic Systems Development Model

4. Software Productivity Center (SPC)

5. Rational RUP

Appendix F contained detailed descriptions of each of the major software development

process models/methodologies identified.

Comparing and Contrasting Software Development Process Methodologies

Conway asserts that most of the world’s population does not have the intellectual

capacity to understand process (Conway, 1998). The quality models identified

previously many times have the attribute that they tell you what to do, but not how to do

it. As such, many attempts to implement the quality models were unsuccessful due to

lack of understanding of the sub-processes involved and their significance in the overall

process. Toward this end, specific organizations had developed methodologies that had

the capability to do the things that the models suggest. The reverse of this capability was

that the models, while telling you what to do, did not necessarily contain the information

of why it should be done.

Macroscope had a reputation for being very rigid; its whole methodology was

based on the process of measuring completion of deliverables as a way of determining

completion of a type of activity. When users talked about planning and schedules, the

dialog did not include phrases like “business requirements,” “system requirements,”

“design specifications,” and so on. Instead the dialog was on 140s, 250s or 490s. This

was because every deliverable had a number, so the number became shorthand. This

www.manaraa.com

 36

shorthand was reinforced by the Fujitsu consultants during the methodology training. A

request that was made to the researcher by a manager stuck in this methodology, was

could the researcher find a way to allow his organization to be more agile and still meet

the corporate standards.

RUP was a complete system that was attempting to challenge Macroscope for

dominance. Given the influence of IBM, it appears to have been moving in that

direction. IBM has used it as its methodology engine making it the core of what it called

the IBM Software Development Platform (Rational, 2001). While Macroscope and RUP

were systems in themselves, SPC was more of a conglomeration of approaches with

consulting being a major part of the package. SPC used consulting, tools and training to

assist the customer in a successful project implementation.

CMD focuses on Process Content Management which was specifically targeted to

assist organizations in achieving Capability Maturity Model (CMM) Level 5 certification.

CMD claimed that its approach would move an organization to Level 5 much quicker

than through other methods. CMD was taking a specific quality model and attempting to

market to organizations the capability to achieve the Capability Maturity Model goal.

CMD's products worked with Microsoft Project Professional® where as RUP was part of

IBM, and Macroscope had no equivalent software tool in its offering which did not allow

it to offer an automated methodology. In CMD Methodology/Process infrastructure and

knowledge bases are added to Task, Project and Portfolio levels of management

(QuantumPM, 2004). Gartner created a matrix of these methodologies; that matrix was

shown in Figure 4, as cited by Fujitsu (Macroscope, 2002). The four quadrants were

www.manaraa.com

 37

Leaders, Challengers, Visionaries and Niche Players. This helped a project evaluate

which methodology they should use depending on the market and the mission of the

product under development.

Figure 4. Comparative methodology models. Used with permission.

Quantitative Analysis of Methodology Models

Figure 4 displayed the methodology models analyzed in terms of their

Completeness of Vision and their Ability to Execute. By converting these qualitative

measures to quantitative equivalents and combining the attributes of Completeness of

Vision and Ability to Execute, a composite index could be produced. One way of

www.manaraa.com

 38

perceiving the intersection of vision and execution was to identify usefulness from a

methodology practioner’s point of view. In this study, the composite indicator that has

been created has been identified as the Methodology Usability Index (MUI). The

generation of an MUI was tabulated in Table A-2 (see Appendix A). The direct

correlation between the Ability to Execute and the execution of project management best

practices was part of the subject area of research question 1. The quality aspect of

research question 2 referred to quality within the project not a quality model per se and

was therefore much more aligned with the Methodology Model Vision. Macroscope had

the highest MUI.

Summary of Model Quantification Analysis

The results of the quality model quantification indicated that for practioners’

quality models like Capability Maturity Model, Capability Maturity Model Integration

and Six Sigma were most applicable to their environment. The results of the

methodology model quantification indicated that, for practioners, Methodology models

like rational RUP and Macroscope were most applicable to their environment. Both of

these models had a direct impact on Project Management implementation. Since the two

models were complimentary and not exclusionary, the impact on the ability of an

organization to address the three research questions of this study could be evaluated by

analyzing the combinations possible for quality and methodology models. A Project

Capability Index (PCI) was created by combining the QUI and MUI where PCI =

MUI*QUI (see Table A-3). The analysis appeared to indicate that a project using a

Capability Maturity Model, Capability Maturity Model Integration, Six Sigma and/or

www.manaraa.com

 39

CobiT Quality Model and a Macroscope Methodology would be best qualified to

participate in this research study.

Measurement

Measurement is included in the literature search as part of answering research

questions 1 and 2. The University of Magdeburg described measurement as process of

assigning numbers or symbols to attributes of entities in the real world that describes

them by clearly defined rules (SML, 2004). Some of the most common categories of

metrics included Product, Process, Objective, Subjective, Direct, Indirect, Explicit,

Derived, Absolute, Relative, Dynamic, Static, Predictive, and Explanatory metrics (SML,

2004). The three major categories of software metrics were product, process and project

metrics (Kan, 2002). Software quality metrics dealt with two major categories of

concern. The first was intrinsic product quality and the second was customer satisfaction

(Kan, 2002). In evaluating project metrics, this study focused on a specific project metric

used in software development projects called Earned Value Management (EVM).

Measures and Metrics Common Definition

Software metrics relied on the underlying theory of representational measurement

(Orci, 1999), which was a technical discipline of assigning a number, or symbol, to an

entity in order to characterize one of its properties. This must have been done within

specific rules. In the definition there needed to be an entity, a property, a measurement

mapping and rules for the mapping. The measurement mapping and the rules were

designated as the metric. The need for a theory of measurement allows for a safe

acquiring and reproducibility of measuring characteristics (Hille, 1997).

www.manaraa.com

 40

Often, people used the terms measures and metrics synonymously. A common

industry approach defined a measure as a quantity and a metric as a comparison of

quantities. For example (ME1, 2005):

• Measure (measurement of quantity): A single item that can be quantified

(length, weight, count, volume…) - An attribute of a product or process.

• Metric (one indicator of quantity relationships): A graphic that usually

combines two or more measures - Related to something important such as

health of a product or process or progress toward a goal or limit. It is

designed to yield information and stimulate questions.

An example was provided here:

Measures: Gas Tank Capacity and Current Contents

Metric: Gas Gauge in your car displays the percent full of your gas tank.

University of Southern California (USC). USC defined a metric as a

characteristic of a process or product (USC, 2001). Metrics can either be directly

observable quantities, or can be derived from one or more directly observable quantities.

In USC’s case, they equated what we’ve commonly defined as a measure to a raw metric

and what we’ve commonly defined as a metric to a derived metric.

Planguage. Gilb developed some very detailed concepts that he used in his

approach to Planguage (Gilb, 2005, p. 399).

Metric Concept *095

A metric is any kind of numerically expressed system attribute. A metric is

defined in terms of a specified scale of measure, and usually one or more numeric

www.manaraa.com

 41

points on that scale. The numeric points can be expressed with defined terms that

can be translated into numbers. For example, ‘Record +10%.’ Normally there

will also be other parameters and qualifiers, which add background detail to the

metric. For example, Meter and Assumption.

A metric specification encompasses all related elements of specification, not just

the Scale of the numeric attribute. A complex specification, with a set of scales of

measure, is also a metric expression. There is no implication that it is elementary

(has only a single Scale).

The term “indicator” was used to denote a representation of metric data that

provided insight into an ongoing software development project or process improvement

activity. Indicators were metrics in a form suitable for assessing project behavior or

process improvement. For example, an indicator may have been the behavior of a metric

over time or the ratio of two metrics. Indicators may have included the comparison of

actual values versus the plan, project stability metrics, or quality metrics. Examples of

indicators used on a project included actual versus planned task completions, actual

versus planned staffing, number of trouble reports written and resolved over time, and

number of requirements changes over time. Indicators were used in conjunction with one

another to provide a more complete picture of project or organization behavior. For

example, a progress indicator is related to requirements and size indicators. All three

indicators should be used and interpreted together.

www.manaraa.com

 42

Software Measurement

The purpose of software measurement was to understand and control the process

and its products (SML, 2004). This was done by continuously defining, collecting, and

analyzing data on the software development processes and products. Software

measurement was a key approach to moving up the Capability Maturity Model

Integration maturity scale; it supplied the meaningful information needed to allow the

improvement of software development processes (SML, 2004).

Components of Software Measurement (SML, 2004)

There were three major components of software measurement: products (see

Table 3), process (see Table 4) and resources (see Table 5).

Table 3. Components of Software Measurement – Products

Components of Software Measurement – Products

Entities Internal Attributes External Attributes
Specifications Size, reuse, modularity, redundancy,

functionality, syntactic correctness,
Comprehensibility,
maintainability

Designs Size, reuse, modularity, coupling,
cohesiveness, functionality, ...

Quality, complexity,
maintainability

Code Size, reuse, modularity, coupling,
functionality, algorithmic complexity,
control-flow structuredness

Reliability, usability,
maintainability

Test data Size, coverage, level Quality

www.manaraa.com

 43

Table 4. Components of Software Measurement – Process

Components of Software Measurement – Process

Entities Internal Attributes External Attributes
Constructing
Specification

Time, effort, number of coding faults
found, …

Quality, cost, stability

Detailed design Time, effort, number of specification
faults found...

Cost, cost-effectiveness

Testing Time, effort, number of coding faults
found...

Cost, cost-
effectiveness, stability,
etc…

Table 5. Components of Software Measurement – Resources

Components of Software Measurement - Resources

Entities Internal Attributes External Attributes
Personnel Age, price Productivity,

experience, intelligence
Teams Size, communication level,

structuredness ...
Productivity, quality ...

Software Price, size ... Usability, reliability
Hardware Price, speed, memory size ... Reliability
Offices Size, temperature, light, ... Comfort, quality

Examples of software measures included the number of source lines of code,

number of defects, number of test cases, number of documentation pages, number of

staff-hours, number of tests run, number of requirements, etc. All these could become

metrics if they were compared over time. Examples of software metrics included defects

per error category, source lines of code per staff-hour, defects per thousand lines of code,

a cost performance index (BCWP, ACWP, BCWS, ACWS) or Earned Value Indices

(CPI and SPI). This study researched the additional following metrics:

1. Macroscope Metrics

www.manaraa.com

 44

2. ITIL Metrics

3. Progress Metrics

4. Effort Metrics

5. Cost Metrics

6. Results Metrics

7. Trouble Reports (TR) Metrics

8. Requirements Stability Metrics

9. Size Stability Metrics

10. Computer Resource Utilization

11. Training Metrics

Appendix G contains detailed descriptions of these metrics listed.

Goal/Question/Metric (GQM)

The GQM model for metrics development was a bottom up approach where

metrics were used for process improvement. This was in contrast to a top down approach

of process improvement such as Capability Maturity Model Integration. Goal-oriented

measurement focused on the explicitly stated goal as the highest importance for

improvement programs. Basili from the University of Maryland in conjunction with

NASA developed a software productivity laboratory in the 1980s timeframe. This

resulted in developing the GQM approach. According to Basili, as cited by Software

Measurement Laboratory (SML, 2004), the GQM methodology is a systematic approach

for integrating goals to models of the software processes, products and quality

www.manaraa.com

 45

perspectives of interest. This is based upon the specific needs of the project and the

organization (Basili et al, 1994).

According to NASA, GQM defined a measurement model on three levels (NASA,

2006): Conceptual level (goal) - A goal was defined for an object, for a variety of

reasons, with respect to various models of quality, from various points of view, and

relative to a particular environment; Operational level (question) - A set of questions was

used to define models of the object of study and then focused on that object to

characterize the assessment or achievement of a specific goal, and Quantitative level

(metric) - A set of metrics, based on the models, was associated with every question in

order to answer it in a measurable way. To improve processes by GQM, the

measurement goals needed to be defined. Then from the goals questions were generated

that if answered would show the progress towards the goals. Finally metrics were

identified that would supply all the necessary information for answering those questions.

The GQM approach provided a framework involving three steps as shown in Figure 5.

Figure 5. Goal/questions/metrics methodology

www.manaraa.com

 46

Software Development Process Metrics

Another approach at software development metrics involved the identification of

metrics with processes. Software metrics as numerical data related to software

development, were required to support software project management activities. Metrics

could be classified with respect to the functions of management as follows: Planning -

metrics served as a basis of cost estimating, training planning, resource planning,

scheduling, and budgeting; Organizing - Size and schedule metrics influenced a project's

organization; Controlling - metrics were used to provide status and track software

development activities for compliance to plans; Improving - metrics were used as a tool

for process improvement and to identify where improvement efforts should be

concentrated and measure the effects of process improvement efforts. A set of

representative Project Metrics includes the following indicator categories: progress,

effort, cost, review results, trouble reports, requirements stability, size stability, computer

resource utilization, and training (USC, 2001).

SEI Goal Driven Software (DOD)

The Software Engineering Institute developed a metrics approach at taxpayer

expense that integrated with its Capability Maturity Model Integration maturity model

and supported government procurement activities. There were four reasons to measure

software processes, products, and resources (Park, Goethert, & Florac, 1996): to

characterize, to evaluate, to predict, and to improve. Characterization gained

understanding of processes, products, resources, and environments. It established

baselines for comparisons with future assessments. Evaluation determined status with

www.manaraa.com

 47

respect to plans. Measures were like sensors that let software professionals keep projects

and processes under control. With evaluation, achievement of quality goals, the impacts

of technology and process improvements on products and processes could be assessed.

Prediction allowed planning. Measuring for prediction involved gaining understandings

of relationships among processes and products, building models of these relationships,

observing values of attributes, and using values to predict others.

This was done to establish achievable goals for cost, schedule, and quality—so

that appropriate resources could be applied. Predictive measures were also the basis for

extrapolating trends, so estimates for cost, time, and quality could be updated based on

current evidence. Projections and estimates based on historical data also helped risks to

be analyzed and design/cost tradeoffs to be made. Improvement occurred when

quantitative information was gathered. This allowed the identification of roadblocks,

root causes, inefficiencies, and other product quality and process performance

improvement opportunities. Measures allowed planning and tracking of improvement

efforts. Measures of current performance created comparison baselines and improved

communications for product and process improvement.

Software Inspections

Overview

Software inspections are included in the literature search as part of answering

research questions 2 and 3. The formalized development of software inspections was

attributed to Fagan’s efforts while working at IBM (Gilb, 1988). Software inspections

became an IBM best practice, but also met their first resistance. Later, Bell Labs started

www.manaraa.com

 48

using the process and reported a productivity improvement of 14% (Gilb & Graham,

1993). A software inspection is a formal static analysis technique that uses well-defined

methods to find defects in software design and development documents. The basic

phases of an inspection include (BDS, 2001):

1. Select reviewers from the authoring group, peers, stakeholders, and subject

matter experts.

2. Reviewers examine the product using an inspection checklist and list errors.

3. Errors are reported and recorded in error logging meetings.

4. The error logs are used to correct products before delivery to stakeholders.

5. Metrics are collected about the inspection process itself and the errors logged.

The Inspection Process

The inspection process consisted of 10 steps broken up into the following three

major sections (Gilb & Graham, 1993): Initiation and Documents – included request for

inspection, the planning process, documents needed for the inspection of the product, the

entry process and the kickoff meeting; Checking – included individual checking and the

logging meeting, and Completion – included edit, follow-up and exit. Other terms for the

logging meeting included inspection meeting (Houdek, Schwinn & Ernst 2002), and error

logging meeting (BDS, 2001). The inspection process did not need to be restricted to just

software artifacts. Other industries were also adopting the process. Hewlett Packard,

which had institutionalized software inspections, had also transitioned the process to

some of their hardware products (Gilray, 1996). The inspection method for drawings was

institutionalized at Boeing with Gilb’s assistance. It was called PEP (Process Error

www.manaraa.com

 49

Prevention) and was so successful, that other software groups picked it up within Boeing

and reconverted the process to apply to the software development process (B-SEPG,

2004).

Defect Detection

The effectiveness of defect detection was due to a combination of factors. The

Software Inspection Process was perceived by some as a process that once put in place

would run smoothly producing consistent results. The effects of the qualifications of the

inspectors and the characteristics of the document were still not well understood among

the general population that was using inspections (Rus, Halling, & Biffl, 2003).

Defect Density

The defect density was used in two different frameworks. The first deals with the

found defects. These types of defect densities were gathered during the Software

Inspection process, and could be measured in the following terms (Gilb & Graham,

1993): total number of defects per document size (pages); defect density (defects/page)

per document size (pages); total defects per inspection duration (minutes), and defect

density (defects/page) per inspection rate (pages/hour). Observations made about defect

density in detected defects included the following (Gilb & Graham, 1993): inspectors

reviewed large documents at a higher number of pages per hour than a corresponding

document with fewer pages; the number of defects per minute when compared to

inspection durations appeared to be linear up to four hours; the defect density dropped

sharply as the scope of the material being reviewed increased.

www.manaraa.com

 50

The second approach addressed the number of defects in an artifact, whether a

document or the code. The results of a Software Inspection may be used to attempt to

determine how many total defects there were originally in the product and how many still

remained. The approach to determining remaining defects was called RDET (remaining

defect estimation technique) (Houdek, Schwinn, & Ernst, 2002). One of the approaches

suggested was taken from what initially developed in the science of Biology. Originally

scientists used this technique to estimate total animal populations (Houdek, Schwinn, &

Ernst, 2002). The RDET Based on Animal Sampling Technique equation is ntotal =

(n1*n2)/nboth where ni = number of animal observed on day i, nboth = number of animals

seen on both days and ntotal = the estimate of the total population.

This RDET was particularly attractive for its innovation, but may not have been

able to be readily adapted by Software Development organizations. There did not appear

to be any support in the literature for re-reviewing an artifact and comparing the two

results. The ability of Inspections to detect defects against the total available would be

another definition of Defect Density. Gilb claimed in 1995 that 95% of all defects can be

removed by using inspections (Software Testing/Quality Conference, 1995). There

seemed to be some industry support for this assertion, at least for large unprecedented

software intensive systems like the Space Shuttle where human life was at stake and the

system options in case of failure were few. Table 6 identified the software development

sub-processes where defects were found in the Space Shuttle software (Billings &

Clifton, 1994).

www.manaraa.com

 51

Table 6. Error Source in On-Board Space Shuttle Software

Error Source in On-Board Space Shuttle Software

Software Development Sub-Phase Percentage of Defects of Total Found
Pre-Build Inspections 85.4%
Other Inspections 7.3%
Testing 7.2%
In Production 0%

Agile reviews/extreme inspections have been developed to obtain results more

quickly with fewer resources needed than with traditional software inspections (Gilb &

Gilb, 2004). A method of quickly determining an engineering estimate of defects has

been anecdotally devised and tested in industry. The process was for knowledgeable

managers to gather in a meeting where a couple of pages from one of the project

requirements or specifications were inspected. The inspection lasted no more than 30

minutes, and no definition of major defect was given. Each knowledgeable person

determined themselves what was major and what was not. After the time was up, the

number of major and total defects was to be tabulated. Table 7 showed an example using

the algorithm to calculate the total number of defects per page. Major IT and Embedded

software corporations had used this method with results matching those predicted by the

method at Microsoft (Finn, 2001) and Intel (Simmons, 2002).

www.manaraa.com

 52

Table 7. Agile Review/Extreme Inspection Sample Error Logging Results

Agile Review/Extreme Inspection Sample Error Logging Results

 Total Defects Found Major Defects
Found

Design Items not
Requirements

Person A

24 15 5

Person B 44 15 19
Person C 55 20 4
Person D 22 4 2

Process Improvement

While Software Inspections were still commonly thought of in terms of defect

detection and correction, there was some significant work being done in the area of using

software inspection data for process improvement. At the beginning of the Space Shuttle

program, peer reviews and inspections were implemented (Billings & Clifton, 1994).

Based on the defect data gathered in the 1970s, IBM was able to use the severe and

critical error data to develop a Defect Prevention Process based on audits and data

analysis (Billings & Clifton, 1994). As shown in Table 6, there were no software defects

discovered in flight. Many of the articles cited have alluded to process improvement as a

result of performing inspections. Most, however, did not specifically identify the

processes involved. Those who did usually alluded to a database of errors, performing

root cause analysis and somehow improving the process.

Additional Innovations in Inspections

Electronic Meeting Systems (EMS). One of the logical fallouts to the use of

inspections in the 21st century with a mobile and virtual workforce was the use of

www.manaraa.com

 53

Electronic Meeting Systems (EMS) to hold the error logging meeting. Phillips Medical

Systems and the Baan Company used an EMS for 14 electronic inspections. The initial

results indicated that using EMS gave much more significance to the error logging

meeting than the traditional face-to-face meeting (Van Genuchten, Cornelissen, & Van

Dijk, 1998). They concluded that using electronic support for the logging meeting may

improve the effectiveness and efficiency of the inspections

Six Sigma, SEI Capability Maturity Model and Software Inspections. The

Motorola Company initiated a drive to get to a quality level of Six Sigma and CMM

Level 3. The specific goals were as follows (Major, Pellegrin, & Pittler, 1998): Quality -

10-times improvement in quality every two years; Customer Satisfaction - exceeding

customer expectations and all competition; Cycle Time - 10-times improvement in five

years; Software Technology Roadmap - all organizations created, qualified and executed

their own Software Engineering Technology Roadmap process, and Process Capability -

all organizations achieved SEI Maturity Level 3. The results were that 75% of the

software organizations were successful in achieving SEI Capability Maturity Model

Level 3, and listed first in the list of Major Initiatives responsible for achieving the goal

was rigorous inspections (Major, Pellegrin, & Pittler, 1998).

High Quality Low Cost Software Inspections. Hedger, in reviewing Radice’s

book High Quality Low Cost Software Inspections (Hedger, R., 2003), includes a history

of software inspections and details of how to efficiently execute the software inspection

process. The innovation in this approach was the re-emphasis on the basics underlying

the process and how they could be more effectively used to reduce the cost of ensuring

www.manaraa.com

 54

quality in the software product. The innovations and efficiencies were limited to the

inspection process itself.

Summary

Software inspections have been around for more than 30 years. They were still

thought of as a method to find and fix defects. This was the old style of quality. It was

basically reject and rework. It did produce a better product, but the rework was done

when the product was finished. The reason that even this was advantageous was that

while the inspection of the software artifact might be at the end of its process, if the

software artifact was at or near the beginning of the software development process, then

finding errors from the software product at the beginning of the process ($90-$120) could

save hundreds or thousands of hours of rework ($10,000) in the testing or customer

delivery phases of the project (Bush, 1990). The literature and industry practice

indicated, however, that there was additional activity and energy being focused on the

data that was captured when defect metrics from the inspections are kept and analyzed.

The data had the great potential to lead software organizations into process improvement

and defect prevention which was the most cost effective type of quality.

Earned Value Management (EVM)

EVM Overview

EVM is included in the literature search as part of answering research questions 2

and 3. A project was composed of four elements: schedule time, cost resources, technical

performance and risk (NASA, 2007). EVM had a schedule variance component, which

involved a time sample of the variance between the work planned and work

www.manaraa.com

 55

accomplished, was described in terms of cost (NASA, 2007). EVM also had a cost

variance component, which involved a time sample of the variance between the actual

cost and work accomplished, was described in terms of cost (NASA, 2007).

EVM Background

The implicit assumption was that the technical aspect of the work being

accomplished was being accurately measured, so that if a deliverable was done within

cost and schedule, it had been a successful effort for the project manager. The current

implementation of EVM recognized that there was a technical performance element to

project management, but did not allocate an earned value variance metric for technical

performance. The use of earned value analysis (EVA) or EVM was first practiced by

industrial engineers in factories in the late 1800s (Anbari, 2003). Starting in the 1960’s,

with the advancement of continually more complex projects the US Department of

Defense introduced the concept of PERT networks (Abba, 1997). This was followed by

the cost/schedule planning and control specification or C/SPEC which then became the

basis for the cost/schedule control systems criteria or C/SCSC.

In the 1960s, due to increasing complexity of projects, the military initiated a

spend plan approach. This led to the development of the PERT network. A resource

loaded PERT network evolved into the first attempt at earned value. The US Air Force

first used earned value on the Minuteman program in 1963. EVM was defined using 35

criteria which were organized into five basic management principles. The 1970s and

1980s brought a consolidation of approaches within the government that standardized the

EVM concepts and management styles. The concept of a planning horizon was

www.manaraa.com

 56

introduced. A C/SCSC Joint Implementation guide was published. Out of this evolved

the concept of total quality management (TQM). In the 1990s project solution

environment EVM became a part of the regulatory requirements for government

acquisition. EVM facilitated the advance of integrated baseline reviews (IBR) and was

essential in the development of international project management principles (Abba,

1997).

C/SCSC identified 35 criteria which were organized into the following five areas:

organization and integration of people and work; planning and budgeting; accounting;

analysis, and revisions (Abba, 1997). The relationships of the elements of EVM are

shown in Table 8 (Blanco, 2003).

Table 8. Earned Value Element Relationships

Earned Value Element Relationships

 Scope Schedule Budget
Work Planned What work was

scheduled?
When is it
scheduled?

How much is
budgeted?

Work Completed What work was
done? How much
was actually spent?

When is it done? How much was it
budgeted for?

EVM Key Components

EVM was a quantitative approach to project management. It purported to

measure the true performance of a project by calculating cost and schedule deviation as

well as predicting actual completion times and costs (Brandon Jr., 1998). The EVM key

components (Anbari, 2003) were itemized in Table A-5 (see Appendix A).

www.manaraa.com

 57

Challenges Associated With Implementing EVM. The following were the

major challenges to the successful commercial implementation of EVM (Brandon Jr.,

1998): purely commercial enterprises had a minimal awareness of the technique; getting

data, especially percent complete and actual cost, if done according to the strict

methodology was not cost effective; reporting was not easily implemented, and project

resistance to implementing EVM.

How Data Acquisition Challenges Can Be Overcome. The less intrusive the

process, the easier data acquisition will be (Brandon Jr., 1998). If the work packages

were not sized correctly, then the smaller they get, the more reporting had to be done

which takes up more personnel time. Calculating percent complete was very time

consuming. A shortcut that would give a close approximation, assuming that the work

packages were properly sized, would be to make close estimates rather than stringent

calculations (Brandon Jr., 1998). Typically projects had to report on a weekly basis. If

the average work packet was also sized at a week, and assuming that the current tasks

were estimated at 50% in error, then the maximum error would be about 1%. This was

derived using the formula of [(average packets per week*average cost per packet*0.5)/

(total cost)] (Brandon Jr., 1998).

How Reporting Challenges Can Be Overcome. The barriers to getting correct

reports out of EV fell into three major areas (Brandon Jr., 1998): getting actual costs;

setting up automatic interfaces between the project and corporate systems, and EVM

mechanisms were usually not straightforward and simple. If the project was not in

www.manaraa.com

 58

serious trouble, then reporting the actual costs wasn’t necessarily required. Only when a

project was in trouble would the management need to drill down to the cost details.

How Employee/Contractor Resistance Challenges Can Be Overcome. Some

people viewed EV as a way of measuring their productivity and thus impacted their

rewards instead of viewing it as a project management tool. Brandon Jr. recommended

separating EV from quality programs, thus making it clear to the project personnel that

EV was not part of the quality evaluations.

Graphics

The earned value graphics were usually depicted with one axis being time in

increments of reporting periods, and the other axis being either money or resource hours.

NASA managed to money at their level. Other Earned Value management techniques

had the vertical axis in labor hours; that was what an IT project Manager often managed

to. The display of Earned Value information could produce data rich graphics. A typical

Cumulative Earned Value Report from created by Primavera had the following

information displayed simultaneously in graphical form with the y-axis being hours and

the x-axis being time units, typically weeks or months (Primavera, 2005): Planned Value

(PV) – a cumulative line that started at zero on the left side of the graph and continued to

accumulate in value until the last week is reached on the right hand side of the graph; it

was planned at the beginning of the period under examination; actual value (AV) - a

cumulative line that started at zero on the left side of the graph and continued to

accumulate in value until the current status week; current or estimate to complete (EAC)

– a cumulative line that started where the AV ends and projected the completion status

www.manaraa.com

 59

given current trends; earned value (EV) - a cumulative line that started at zero on the left

side of the graph and continued to accumulate in value until the current status week; it

was the amount of hours budgeted for the work that got performed; percent complete – a

cumulative line that started at zero on the left side of the graph and continued to

accumulate in value until the current status week; it was the percent of work completed;

budget at completion (BAC) – A total line that started from the left and continued to be

calculated each time period; it was the total budget baseline, and estimate at completion

(EAC) - A total line that started from the left and continued to be calculated each time

period; it was the Actual to date plus the estimate to complete the remaining work.

A summary of the EVM status was displayed graphically with the use of

performance indexes. When displayed, the y-axis was centered at 1.0 and performance

was tracked during the time intervals from left to right. Both CPI and SPI could be

graphed simultaneously. A value of 1.0 was desired. FigureB-3, (see Appendix B)

displayed the various EV parameters in graphical form. The cost variance (CV) and the

schedule variance (SV) were displayed graphically. As with any cumulative chart or

worm chart, besides just seeing the current values, the trend also was displayed. The

trend could be used to predict the future to the extent that a trend would not change

quickly without adding additional resources or de-scoping the activity. The S-curve had

the limitations that project managers often will not see the problems starting to occur

because the deviations were so small in absolute terms that they did not seem significant

although if they were displayed in SPI or CPI numbers, they would be seen to be

significant. Companies that presently use the cost/schedule control systems criteria

www.manaraa.com

 60

(C/SCSC) according to exact regulations are not able to institute early (and therefore

meaningful) corrective actions on possible cost overruns. This also concurs with

government published data that recommend the graphing of earned value via an S curve

plotted against monthly durations, or calendar month designations (Cass, 2000).

Further Refinements of CPI and SPI

With modern technological advances, EV could be further utilized below the

project level. It was possible to apply EV at the sub-project or milestone level. The

overall EV of a project examined the cumulative cost over the lifetime of the project.

Within each project were many milestones. There were CPIs and SPIs for both cases.

The following C/SPIs have been identified (Chang, 2001): S1: measures period schedule

performance – Project Level; S2: measures total schedule performance – Project Level;

C1: measures period cost – Project Level; C2: measures total cost – Project Level; S3:

measures inception to-date schedule performance – Milestone Level; S4: measures

milestone schedule performance – Milestone Level; C3: measures inception to-date

milestone cost – Milestone Level, and C4: measures total milestone cost – Milestone

Level. The characteristics of these C/SPI combinations were summarized in Table A-6,

(see Appendix A). Using these lower level CPIs and SPIs, a project manager could track

the status of blockpoint releases within a project as well as track to overall status of the

project.

Some experts preferred the use of CR instead of CPI. They identified five

strategies that a project manager may adopt to deal with a bad project situation (Evensmo

& Karlsen, 2004): laissez-faire strategy – do not change anything; Santa Claus strategy -

www.manaraa.com

 61

try to maintain original schedule and budget by becoming more efficient; tail between the

legs strategy - try to maintain original schedule and budget by reducing scope; age before

beauty strategy - try to maintain original schedule and budget by adding resources, and

late sunset strategy - try to maintain original planned costs by extending the schedule.

Evensmo and Karlsen’s emphasis was on the use of CR as opposed to just CPI or SPI.

They acknowledged that their use of CR was not based on firm theory, but they remained

of the opinion that it was an important tool.

Defect Performance Index (DPI)

DPI (Olson, 2008) is a method of measuring project performance currently being

used by Olson, President of the Lean Solutions Institute. The method was proprietary,

but the author was authorized to generically describe it. A model of projected defects in

the software development phases was compared against actual defects found in software

development phases using the formal software Inspections methodology (Gilb &

Graham, 1993). This resulted in a DPI, the application of which to project management

remained proprietary.

Performance-Based- Earned Value Management

Another variation on a theme was an approach to Earned Value Management

called Performance Based-Earned Management (Solomon & Young, 2006). A standard

Earned Value Management System (EVMS) had limitations with respect to both

standards and models for systems engineering, software engineering, and project

management (Solomon, 2006). The GAO reported on deficiencies in the application of

www.manaraa.com

 62

EVMS (GAO, 2006) in the Ballistic Missile Defense System (BMDS) program of the

Missile Defense Agency (MDA). Four areas of deficiency were identified:

1. Deferred Functionality - Contractor did not track the cost of work that was

deferred from one block to another. As a result, the cost of the first block was

understated and the cost of the second block was overstated.

2. LOE - Prime contractors incorrectly planned discrete work as level of effort

(LOE). The program lost is ability to gauge performance and to make

adjustments that might prevent cost growth.

3. Re-baseline - The cumulative performance of one contractor was distorted

because it re-baselined part of its work. When variances are set to zero, the

cumulative performance of the contractor appeared more positive than it was.

4. Award Fee - MDA rated a contractor’s cost management as outstanding and

awarded 100%of the related fee although earned value data indicated that the

contractor overran its budget.

Performance based EVM as documented in the book Performance-Based Earned Value

asserted that it provided guidelines and examples that will ensure that the EVM

information was accurate and reliable; the EV was based on technical performance or

quality, and a program using Performance-Based EVM would not have EVM deficiencies

reported by the GAO (Solomon, 2006).

Comparison and Contrast of Quality Project Management Approaches

This research identified some major categories of approaches to ensuring that a

software development project is successful. These major categories included but are not

www.manaraa.com

 63

limited to the following: quality models, software development process methodologies,

measurement/metrics, software inspections, and earned value management. In reviewing

these categories for application to our study research questions, it was imperative to

consider the component effect of the executive in the communication status with the

purpose of effective and successful management of the project. When people in technical

disciplines are communicating with executives, it is critical to keep the following

constraints foremost in presentation of information (Tripathy, 2007):

1. Executive communication should have a sales orientation. The communicator

should think like a sales person when developing the communication. It

should have been reviewed by the communicator as if he were an editor.

2. The communication should contain high level summaries of key ideas or

solutions you are proposing. They should be presented in a logical flow.

Each idea should be present in at the most two or three sentences or bullet

points.

3. If necessary, the communicator can give links or references to topics where

the ideas that are presented may benefit from more detailed explanations.

4. Use the right word, right statement, and right flavor in your communications.

They should reflect clarity of thought and logic, and be without redundancy of

unnecessary content.

5. Use heading and subheadings judiciously. Try presenting a long list of

information in bulleted list.

www.manaraa.com

 64

NOTE: The author of this study found from many years of experience in

communication, use of numbered lists enhances communication efficiencies

to a greater degree than bulleted lists. In communication, it is much easier and

less ambiguous to refer to Item 9 rather than the Ninth bullet down from the

top.

6. Avoid repetition of ideas, jargons, phrases, ambiguity.

7. Read, re-read and if possible rewrite the executive communication before

sending it for review by others.

8. Try creating at least two or three different executive communications and

choose the best one among them.

9. Avoid using graphics or information that requires graphics to understand.

10. Review the communication from the executive’s viewpoint. Do you see it

addressing all of your concerns? If yes, you have written the right stuff. If no,

rework.

11. Check the following: grammatical and spelling errors, consistency in tense,

consistency in content (data and facts), and stick to one version of English

language.

As previously noted, this study had three research questions. The first research

question focused on Project Management. The second research question focused on

Quality. The third research question focused on Executive Communication. In Table A-

4, (see Appendix A), each approach was assigned a value from 0 to 5 in each of the three

research question emphasis areas with respect to how thoroughly they cover the area.

www.manaraa.com

 65

This coverage number was based on the research performed in that area. Then an

Effectiveness Penetration Index was calculated by averaging the coverage values. A

Pareto analysis of EPI approaches was shown in Figure 6. It appeared that Defect

Performance Index, Performance based-Earned Value Management, Earned Value

Management, Software Inspections, Macroscope, Malcolm Baldrige and Requirements

Stability Metrics had the most affinity towards the goals of this study.

EPI Pareto Analysis

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

DPI
EVM

PEVM

Ins
pe

cti
on

s

Malc
olm

 B
ald

rig
e

Req
ts

Stab

6 S
igm

a
TCO

TQM
CMMI

Cos
t M

etr
ic

ITIL

Prog
res

s M
etr

ic

Res
ult

s M
etr

ic
CMM

Effo
rt M

etr
ic

IS
O 90

01
SPC

Trou
ble

 R
ep

ort
s

CMD
DSDM

Mac
ros

co
pe

Rati
on

al
RUP

Size
 S

tab
ilit

y

Trai
nin

g
Cob

iT
CRU

Ef
fe

ct
iv

en
es

s
Pe

ne
tr

at
io

n
In

de
x

Sc
or

e

Figure 6. EPI Pareto analysis.

Conclusion

The amount of data presented in the research was an attempt to demonstrate that

the areas of needed emphasis indentified in the NATO report almost 40 years ago have

not gone unnoticed. Five major areas of endeavor were identified: quality models,

www.manaraa.com

 66

development methodologies, metrics, inspections and Earned Value Management. This

was not an exhaustive list, nor were the unique approaches identified in each area

complete. They were a small but representative sample. If the areas and approaches

were further examined, it could be determined that the audience they were

communicating to was not the same and the viewpoint of the importance of the

information presented by each specific approach could vary. The research contained

herein then, did in fact reinforce the following assertions/conclusions:

1. The problem areas identified in the NATO report are still occurring.

2. An entire support industry has sprung up to attempt to solve the problems

identified by the NATO report.

3. There was no unified theory or implementation approach across the

various areas of emphasis.

4. There was still a communication gap between the technology

experts/implementers and the managers and executives with

organizational fiduciary responsibility. The gap was demonstrated in the

various viewpoints of the information presentation in the identified areas.

5. The literature research analysis performed in this study as summarized and

depicted in Figure 6, provided a viable framework for development of an

integrated methodology that addressed the research questions of this study.

These conclusions formed the framework for the chapter 3 dialog which

examined the possibilities of developing a methodology for measuring project status

based on the analysis and downsizing selection of the data from the literature search in

www.manaraa.com

 67

Chapter 2. Chapter 3 introduced the research concepts of using agile inspections to

implement a quality component in earned value project management at the beginning of a

project before testing occurs.

Summary

This research has just barely skimmed the surface on the subject of software

development metrics. The GQM approach was included to show the level of research

and empirical application that has been conducted with academia and governmental

cooperation. The ITIL and Macroscope areas were included to specifically address the

Information Technology approach to metrics management and usage. It is different from

embedded systems and governmental acquisitions. General descriptions were also

included from industry and academic class work to show what some of the more

advanced practical applications of metrics are evolving to.

Earned Value is a set of metrics that show the status of the process of executing a

project. The parameters that are examined are cost and schedule status over time.

Earned Value has both a graphical and mathematical component. Part of the ability to

use Earned Value to best advantage is the careful selection of the graphical displays.

Selecting the correct parameter to focus on is critical to understanding the predictive

elements of Earned Value. Earned Value is generally accepted as a project must for large

programs and DOD/Government funded programs. It is making some head way into the

commercial marketplace, and will be more commonly accepted as new technology and

tools to ease the overhead burden are introduced into the marketplace.

www.manaraa.com

68

In many of the technical, professional and management forums, there is a never-

ending dialog concerning what is the best approach for a quality model or a process

methodology. This research seemed to indicate that there is not common agreement on a

best approach. The mission of the product needs to be taken into consideration. The

mission of the organization needs to be considered also. In the case of supplier provided

Process Methodologies, supplier viability and methodology cost need to be considered.

A general observation is that the quality models are more technically based where as the

process methodologies are more business oriented. The businesses attempt to develop

methodologies that implement what is technically recommended but in a practical way.

Chapter 3 identifies the method that is used in the research. It further develops

the application of some of the software model aspects found in this chapter, both process

and project.

www.manaraa.com

 69

Chapter 3: Methodology

As previously stated in chapter 2, software projects continue to fail most often due

to project management quality issues. Since the NATO report was published in 1968,

software quality has been an elusive goal for many IT, military, and government

organizations. This chapter contained the research design which includes the subjects of

quantitative approach, population, reliability, validity, data collection and analysis,

sampling and sample validity. There is also an examination of EVM as a project

management methodology with adaptations for the research in this study followed by a

chapter summary.

Research Design

Quantitative Approach

There are three major categories of research approaches: quantitative, qualitative

and mixed methods. This study used the quantitative approach to project status; it did not

look at the qualitative aspects of presenting project status since that was what oftentimes

put a project manager in conflict between the advertised qualitative status and the actual

quantitative status. The logical approach was deductive as opposed to inductive. The

quantitative effect that was observed was the impact of defects on schedule and cost

factors within a software project. Consistent with the quantitative approach, this research

presupposed that the results garnered from the specifics of the project under study could

be successfully generalized to the broader community of software projects (Ross, 1999).

More specifically, this study used a quantitative, post-facto, exploratory, research

design. Statistical tools and techniques were used to examine the project data after it was

www.manaraa.com

 70

completed. Post-facto studies investigate possible cause and effect relationships by

observing an existing condition or state of affairs and searching back in time for plausible

causal factors (Sinks, 2007). Because the events and independent variables had already

occurred, the study was non-experimental (KovacsBurns, 2005).

 The data that was analyzed post-facto were requirements documents that were

generated during the process of producing a software product. The research descriptive

in nature although an argument could be made that it was explicative; the determination

would be to what extent an existing method has been modified or whether the new

element added was significant enough to stand alone.

The experimental design could not be employed. The experimental design

required control populations and this option was not available. Most software projects

were under budget and time constraints and the project data made available to the

researcher was no exception. Management was willing to allow evaluation of project

data already completed, but was not willing to invest in experiments on projects that

already had cost and schedule commitments that were thought to be adequate with the

current processes that were in place. Thus an experimental approach was not possible; as

stated previously, the non-experimental design was used.

The qualitative approach and the mixed methods approach were not taken for the

following reasons:

1. Since the research approach was quantitative, there was no requirement for

information from participants in the initial phase of the research. Follow-on

studies might require participant input, but this initial phase did not.

www.manaraa.com

 71

2. The research was noninvasive into the processes of the projects doing

development. This was intentional in that it was the closest to a control

environment with meeting the strict requirements of single-blind controls.

3. Part of the research findings presented project status analysis results to senior

management as a comparison to the project status results from the

conventional methods employed. It was not desired that the people

conducting the projects participate in any way in the parallel research.

Population

The population for this study came from the IT organization of a large aerospace

company performing software development. The IT organization had been appraised by

an SEI-approved appraiser at Capability Maturity Model Integration Level 3. A project

was sampled within one of the IT software development organizations. The project dealt

with web applications interfacing with production databases. The project that was the

subject of the research was a company wide application. It was an automated tracking

system used throughout the enterprise to request acquire, change, relocate, and dispose

services for Information Technology (IT) assets including computing hardware and

software products. It had visibility to the top executives, had to be operational 24 hours a

day, seven days a week. It was an intricate part of the IT internal operations and was

critical to the successful operation of the rest of the entire organization.

The IT supervisor, project manager and part of her staff were located in the state

of Washington. Other parts of the organization were located virtually throughout the U.

S. as well as Indian subcontractors. The populations sampled were requirements

www.manaraa.com

 72

documents from the project and the defects that were discovered in them. The samples

were part of a large major upgrade to an existing product. Expected quality data was

provided by the application supervisor and project manager.

The research question about project management focused on determining

requirements for project status quality during project execution prior to the test phase,

which would produce reliable predictions of future impacts on the cost and schedule

commitments of the project. The research question for quality focused on examining if

there was a software quality measurement technique currently available that could be

adapted as an in-process (before testing) project quality measure. The research question

for communication focused on determining if the process project impact based on product

quality required a new and as yet, undocumented, communication mechanism or method

not currently part of the structure of established project management reporting practices.

Reliability

Reliability in this study had two aspects. The first aspect was the process that the

project followed in producing the software deliverables that make up the components of

the software development process in the Macroscope methodology. The project sampled

was operating in an industry standard reliability framework: Capability Maturity Model

Integration. As each level of Capability Maturity Model Integration maturity was

achieved, the reliability of the processes to produce a product increases and the products

themselves were more consistent within the project and from one project to the next

within the same organization. The project, with all 16 documents, was appraised at

Capability Maturity Model Integration level 3 – Defined. This level has all projects

www.manaraa.com

 73

operating at a common organizational level set of processes including documentation,

software development processes and metrics data collection. The documents and

processes for developing them should have had a consistent reliability in documentation

data gathered.

The second aspect of reliability in this study was the reliability of the inspection

results when the documents created using the Macroscope methodology in a Capability

Maturity Model Integration Level 3 process environment were examined. The subject

matter experts that reviewed the documentation were software architects in the

organization that the project was in but not directly related to the project. This was to

attempt to ensure the reliability of their inspections in being objective and unbiased.

Validity

The project sampled was representative of types of projects in the company IT

department and IT departments in general. It was a large project covering more than a

year’s time span that was a major upgrade to an existing system. The documents sampled

were completed documents of a completed project with multiple releases of the

application in production. Customers were using the application and customer identified

defects were being tracked by the enterprise help desk. The documentation was stored in

production level configuration management tools.

The methodology employed for determining the validity of defects detected was

based on industry norms of generic definitions of requirements defects. The rules applied

to the unique total defects detected and defects remaining calculations were based on

www.manaraa.com

 74

industry experience from recognized experts in the field of software inspections as

applied both to commercial and government projects.

Data Collection

For this study, the data that was used was existing archival data. Gathering this

research data did not involve answering questionnaires by human subjects. The data used

derived from already completed production documentation and was collected completely

independently of any activity within the projects themselves. The documents were made

available for analysis, and any subsequent findings had no impact on the ongoing

projects. The data collected fell into three categories:

1. Project Data: The specific data concerning the project that fed into the

parametric equations for performance calculations like schedule(s),

documentation, resources, etc.

2. Project Management Estimates: Project related personnel were requested

to determine estimates on the quality of their deliverables, something not

done in standard project management.

3. Major Defects found: The number of defects in the project deliverables

that was determined by subject matter experts using the Agile Inspection

Method.

Data Analysis

The analysis of the data collected following the process outlined for analysis of

the documents’ quality and defect density was done through the use of standard data

www.manaraa.com

 75

analysis tools such as statistical process control, simulations, input sampling and

parametric analysis. The three research questions previously stated are as follows:

1. What are the requirements for software quality during project execution, prior

to the test phase that will produce reliable predictions of future impacts on the

cost and schedule commitments of the project?

2. What is a software quality measurement technique currently available that can

be adapted as an in-process (before testing) project quality measure?

3. What is the In-Process (before testing) project impact based on product

quality that requires a communication mechanism or method not currently part

of the structure of established project management reporting practices.

Testing of research question 1 was accomplished by developing a parametric

simulation of the project that responds to defects detected and comparing the results of

the projected QPI method impacts with actual project performance. Testing of research

question 2 was accomplished by evaluating the effectiveness of the agile software

inspection technique selected from the literature review analysis to produce a

measurement of software project quality. Testing of research question 3 was

accomplished using the QPI method of project communication that incorporated the

additional elements identified in the parametric simulation of the project that do not

currently exist in project management communication constructs to communicate the

project simulation results to senior management.

www.manaraa.com

 76

Sampling

Sample method. The sampling approach chosen for this research was purposive

sampling. Within purposive sampling there were two major categories: judgmental and

quota (Cooper and Schindler, 2003). Quota sampling was used to improve

representativeness. Judgmental sampling was used to ensure that the samples conformed

to specific criteria. In this study the judgmental sample method was used. The specific

criteria were that the sampled documents were all requirements documents; they were of

Macroscope design, and they occurred in a project that used the Macroscope

methodology. The project was also Capability Maturity Model Integration Level 3

appraised. The documents selected were what the project had available and were used in

the execution of their project. No attempt was made to alter the samples to fit the

prescribed methodology. Instead both the documents and their state of currency were

used exactly as they had been created and subsequently modified (or not) by the project.

The other judgmental aspect of the sample was the selection of the subject matter

experts to review the requirements documents. The subject matter experts were selected

based on the following criteria:

1. They had no connection either technically or organizationally with the

projects.

2. They were well respected by their peers and management (who had to

approve their involvement in this study).

3. They had a broad bandwidth of knowledge and experience in the IT

environment, both in applications development and in providing services.

www.manaraa.com

 77

Sample size. In this research, the sample size was the number of requirements

documents which were sampled individually and independently. For the project, the total

number of documents examined was 16. The total number of unique content pages for

this combined set of requirements documents was 378. With the word count per page

ranging around 120 per page (conservative), the sampling size opportunity for unique

defects was in the order of 45,360.

Sample size justification. As previously itemized, the various sample size

groupings were, in increasing order, 1, 16, 178 and 45,360. When requirements were

being reviewed for defects, each word that failed to meet the reviewing criteria for a valid

requirement was considered a defect. A defect was identified under the checklist

conditions shown in Appendix I which was the actual checklist the reviewers used to

determine major defects.

When defects were counted, if one sentence contained eight different words or

phrases that were defective, then the number of major defects for that sentence was eight,

not one. The opportunity then for defects depended on the word total with only one

defect being allowed per word. If a word and its context were such that two possible

major defects could be realized, the Agile inspection counting rules only allowed one

defect to be counted.

Example: For the following requirements statement, the screen should respond to the

input quickly, there were at least two major defects:

www.manaraa.com

 78

1. The word should is not a requirement. The application could be coded without

any attempt made to meet this requirement and it would still be legally correct.

The statement needs to say that the screen “shall” respond…

2. The word quickly is not testable. There is no quantification to verify that

performance is met or not. If the statement was modified add a two second

response to an input then it would be valid.

Thus, a reviewer would log two defects even though there is only one requirements

statement.

Sample reliability. The project that was sampled was part of an organization that

was appraised at a Capability Maturity Model Integration Level 3. One of the Key

Process Areas at Capability Maturity Model Integration Level 2 is Requirements

Management. At Capability Maturity Model Integration Level 3 there is another

requirements oriented Key Process Area titled Requirements Development. The

requirements documents sampled in this study were created in a Capability Maturity

Model Integration Level 3 process. The stability and reliability of the requirements were

clearly established by the project’s status in Capability Maturity Model Integration.

This sample reliability and process stability was necessary to allow the correlation

of the parametric simulation to the actual project results. If the quality of the documents

or the process of producing them varied from document to document within a project or

across projects, then the ability to make a consistent correlation of requirements defects

on the project process would have been diminished.

www.manaraa.com

 79

Sample validity

Sample validity has two components: accuracy and precision (Cooper &

Schindler, 2003). The sample was stable with no systematic variation. The requirements

documents conformed without deviation to the Macroscope methodology that was

implemented at Capability Maturity Model Integration Level 3. The precision of the

estimate was determined by the congruity of the documents developed to those that the

methodology prescribes.

Precision is expressed in terms of validity and reliability (Hopkins, 2000).

Validity is determined by how well it measures what it’s supposed to. In this study, all

defects were valid defects. Reliability deals with the ability to repeat the results. The

methodology involved was designed to specifically negate the impact of different

subjective appraisals thus reinforcing the reliability of the methodology.

EVM Methodology

The EVM Methodology is a well established methodology with two major

components: cost and schedule. However, all projects contain a third project component

of technical performance/quality and a fourth of risk. In the Earned Value Management

Methodology currently, there is neither a direct quality or risk methodology component.

This study incorporated quality into the EVM methodology. The attributes of EVM

components are composed of predicted values and actual values. This study analyzed the

various approaches within the software profession for measuring quality to determine if

one or more of the quality measure could be included in the EVM methodology to create

a quality component to EVM.

www.manaraa.com

80

Additional Factor Inputs, Equations and Quality Component of EVM

There were additional factor inputs with resulting equations and quality

components. These factors were all identified and itemized in detail in Appendix C.

Factors included content pages, defects identified, expected defect density, and impact

multipliers.

Summary

This chapter provided an overview of the research approach used including the

research methodology. The research approach is quantitative specifically using a

quantitative, post-facto, exploratory, research design. Statistical tools and techniques

were used to examine the project data after it was completed. It is non-experimental

since all activity on the project being researched has already been completed. The QPI

method was developed from the literature search; it integrates product quality with EVM

to produce project quality.

In chapter 4, the QPI method that addressed research question 1 is developed

based on the literature research performed in chapter 2. Agile inspections that addressed

research question 2 were initiated on completed project documents with the simulation

results documented. Project metrics were part of the analysis and the results were

captured. The data gathered from the project was analyzed using the QPI method and

conclusions were developed including presentation of results that addressed research

question 3.

www.manaraa.com

 81

Chapter 4: Results

As previously stated in chapter 3, software projects continue to fail most often due

to project management quality issues. Since the NATO report was published in 1968,

software quality has been an elusive goal for many IT, military, and government

organizations. Software projects fail most often due to project management quality issues

(Jones, 2004)—which include not managing changing requirements, not allotting time for

detailed requirements analysis, and not allotting sufficient time for verification tasks

(including inspections, testing, and defect repairs).

This chapter reports the results of the data analysis on the use of the new project

quality methodology based on the literature review and the study research. The results of

data analysis consist of (a) the analysis of the methodologies found in the literature search

and the resulting new methodology that addresses the research questions, (b) the results

of running a simulation using the new methodology with actual project data from a

completed project, and (c) comparing simulated performance with actual project

performance.

The findings document a significant improvement in early project management

detection of poor project status. It provides answers to the following research questions:

1. What are the requirements for software quality during project execution, prior

to the test phase that will produce reliable predictions of future affects on the

cost and schedule commitments of the project?

2. What is a software quality measurement technique currently available that can

be adapted as an in-process (before testing) project quality measure?

www.manaraa.com

 82

3. What is the in-process (before testing) project affect based on product quality

that requires a communication mechanism or method not currently part of the

structure of established project management reporting practices?

Results of Data Analysis

On February 22, 2005 the project researched in this study completed releasing its

requirements documents. The status reported by the project was that it was on schedule

and within budget according to the parameters set by the organization. The application

was scheduled to be delivered in 3 months, at the end of May. At this point in the

project, if the QPI method had been available to executive management, it would have

provided them with the following information:

1. The QPI for the project was 0.29. In EVM, no project can recover from a

performance index that low. To continue, the project must be re-baselined.

2. A schedule slide of 3.6 months was projected.

3. An additional resource impact of 14,764 hours was projected.

The executive team reviewing the project status would have received a green status from

the standard project management disciplines, while the QPI method projected a slide to

September. In the rest of chapter 4, the details of how these results were obtained are

explained along with detailed findings.

Analysis of Literature Search

 The first set of results comes from the literature search and the EPI analysis. Out

of the EPI analysis came the combining of elements developed separately to produce

something that had not existed previously (based on available literature). The creation of

www.manaraa.com

 83

the Quality Performance Index (QPI) and the use of Agile inspections to achieve the data

used in the QPI are the QPI method and were derived from the literature search.

EPI Analysis

According to the EPI analysis in Figure 6, the literature research areas that had the

most affinity for the study research questions were DPI, EVM, PEVM, and inspections.

DPI is a proprietary methodology and therefore not much further analysis is achievable.

PEVM is a special case of EVM and the two will therefore be considered as the same

with EVM being the methodology analyzed.

EVM analysis. A project has four major components (NASA, 2007): cost,

schedule, product technical/performance/quality, and risk. EVM’s coverage of those

project components includes cost and schedule. While Earned Value has the ingredient of

work accomplished, the measuring of the work accomplished is not a part of the EVM

methodology. This can result in work been credited as accomplished when it will yield

inferior performance. This inferior performance is often masked until testing occurs.

This can cause the project to go from green to red as the project enters the test phase and

the more advanced test cases start to fail.

The EVM performance indexes are constructed similarly such that if the project is

performing better than expected by accomplishing all its tasks and using less budget (i.e.,

being underrun), then the CPI is >1.0; and if the project is performing better than

expected by completing its task ahead of schedule then the SPI is >1.0.

Quality Performance Index (QPI). If the EVM methodology were to have a

product technical/performance/quality performance index consistent with the other two

www.manaraa.com

 84

performance indices it would be in the form where performance better than expected

would be > 1.0 and adverse performance would be < 1.0. Software inspections produce

an indication of quality on software development products prior to the software entering

the test phase. If an element of expected quality in the software development products is

introduced, then there would be the minimum number of elements necessary to produce a

quality performance index within the EVM methodology.

When measuring quality in the amount of defects in a product, the fewer the

number of defects, the better the quality. To produce a performance index where better

than expected produced a result of > 1.0, the QPI equation would be as follows:

QPI = Expected Quality/Actual Quality (Equation 1)

Inspections for defects. There are two aspects to inspections. The first is what

type of inspections and the second is where in the software development process the

inspections occur. The problem identified in this study is a lack of accurate status on the

project status before the product enters the project testing phase. Earned Value

Management was previously cited in this study as being most vulnerable to inaccurate

status when the project was in its early phases. Therefore, the literature suggests that the

best documents to start inspecting would be the requirements documents.

As previously identified in this study, there are multiple types of inspections. The

formal Fagan inspection is the most rigorous but also requires the most resources and

time, which is something that most projects which are in trouble usually do not have. In

addition, the objective of the Fagan inspection is to fix the product whereas what this

study is interested in are ways to improve the reporting of project status. The Agile

www.manaraa.com

 85

inspection process gives defect counts but uses very few resources and is not as rigorous

in process as Fagan inspections.

In summary, we concluded that, since we need correct status as early as possible

because the early phases is when EVM is least accurate, we would inspect the project

application requirements documents. Further, since resources needed to support

inspections are usually tight, the study decided to use agile inspections. Along with low

resource usage, agile inspections produce the defect count and the defect location if the

reviewer annotates the document. Agile inspections have the disadvantage of not

producing the specific defect type or improving the product under inspection.

EPI Results - A QPI Method. The results of the research analysis from the

literature search led to the following attributes of a QPI integrated into the EVM

methodology:

1. QPI value computed by dividing Expected Defects by Actual Defects.

2. Agile inspection process used for determining actual defects.

3. Project requirements documents inspected.

4. Effort leverage between finding and fixing defects in requirements vs.

finding and fixing defects in test applied to unexpected defects to obtain

schedule impact.

Items 1 and 2 are the elements used in the implementation of the QPI method, which is a

method for determining project status that did not exist prior to this study. Items 3 and 4

give the user of the QPI method direction on where is the place to incorporate it in the

www.manaraa.com

 86

project that provides the most prediction leverage with the minimal use of resources at

the earliest stage in the project where it is possible to use the QPI method.

Simulation Parametric Data

The second set of results was found by creating a parametric simulation of the

QPI method’s prediction of the project performance. The data produced by the

simulation was compared to the actual project performance. The simulation was created

parametrically so that an organization attempting to use the QPI method could adjust

their variables to meet the unique conditions existing in their own projects.

Independent Variables (IV)

The IVs in this study were the parametric variables that are inputs to the QPI

method simulation. The following IVs were of primary interest in this study:

CP = Content pages of each document reviewed. Content was defined as that part

of the document that adds value to the product.

D = Major Defects found by a single reviewer. Requirements documentation is

the only class of documentation that was examined; architecture, design,

and code were purposely excluded. An example of a customer

requirement that had at least one major defect is the application will

respect the users time. This requirement was un-testable and thus a major

defect. There was no test case that could determine respect. Instead the

statement needed to have a quantified aspect such as the application shall

display results within two seconds of a user’s request. Thus, a test case

www.manaraa.com

 87

could be developed that had a pass / fail criterion of two seconds response

time for the application.

ED = Expected defects per content page. This was the value of defects per

content page of documentation that the project managers expect the

project developers to produce during the software development process.

This was a normalized predictive quality indicator. In the methodology,

this value was provided by the project manager at the start of the software

development project.

H = Hours per day that a person spends on a project.

P = Number of people on the software development project.

TCP =Total number of content pages reviewed. This is a cumulative number of

pages reviewed by the reviewers as more documents are reviewed (see

Equation C-2 in Appendix C).

Impact Multipliers (ME1, 2005):

There were well established leverage factors for defects found in the various

phases of software development compared to the cost in time and resources that it would

take to fix the same defect when it was detected in the test phase. For pre-coding defects,

the leverage can range typically from 100-to-1 to 10-to-1 (Rothman, 2000). If there were

requirements defects that were caught and corrected in the specification phase of a

project, then the resources required to fix them there was typically 10 times instead of

100 times (ME1, 2005).

www.manaraa.com

 88

PI = 1000. The Impact multiplier of defects detected, after the product was

released to production that were generated in the Requirements phase.

TI = 100. The Impact multiplier of defects that were detected in the Test phase

but were generated in the Requirements phase.

DI = 10. The Impact multiplier of defects that were detected in the Design

Specification phase but were generated in the Requirements phase.

Dependent Variables (DV)

The DVs of interest were related to quality. These were newly identified DVs

based on the methodology developed from the literature research that identifies Project

Management information that was produced by a Quality Component of EVM. There

were two areas of project management information that could be created by an earned

value management process that contained a quality component.

RD = Total Defects found by the reviewers. The rule of thumb for estimation was

that the total unique defects found was twice the number that was that

maximum of the largest number of defects found by each reviewer (see

Fig. C-1 in Appendix C).

TD = Total Defects in the document. The rule of thumb for estimation was that

the total number of defects in the document was three times the number

detected (see Equation C-3 in Appendix C).

TDD = Summation of Total Defects in each document. This was a cumulative

number of defects detected by the reviewers as more documents were

reviewed (see Equation C-4 in Appendix C).

www.manaraa.com

 89

DD = Defect Density - Detected Defects per Content Page. This was the total

number of defects detected divided by the total number of content pages

(see Equation C-6 in Appendix C). This was the actual value of the

quality index as compared to ED.

QPI = Quality Performance Index (QPI). Earned Value Management had two

performance indexes in its current methodology. Schedule Performance

Index (SPI) was described in Table A-5 (see Appendix A). It had both a

predicted schedule component (Planned Value) and an actual schedule

component (Earned Value). Cost Performance Index (CPI) was described

in Table A-5 (see Appendix A). It had both a predicted cost component

(Earned Value) and an actual cost component (Actual Cost). To develop a

QPI, therefore, there had to be a predictive component and an actual

component. QPI was the ratio of the expected quality (ED) to the detected

quality (DD) as described by Equation C-8 in Appendix C.

The QPI status to Executive management could be represented in the same scale

as the status of the Cost and Schedule performance indicators:

Green = >90%

Yellow = 80% - 90%

Red = <80%

The second piece of project information was potential cost and schedule impact in terms

of projected hours of resources and days of schedule. Management had identified an

expected defect density, which when multiplied by the number of content pages or lines

www.manaraa.com

 90

of code generated in a development phase produced the number of anticipated defects in

that phase. When the number of real defects found in that phase was subtracted from the

number of anticipated defects, this left the number of unanticipated defects. This was the

number of defects per content page that were not expected in the planning of the project

and was shown in Equation.

UDD = Unanticipated Defects per Content Page. The inspected defects per content page

minus the expected defects per content page (see Equation C-7 in Appendix C).

Status Reporting – Project vs. QPI Method

A comparison of the classical project EVM status reporting to the enhanced QPI

method status reporting is shown in. If the QPI method had been in place on the project,

as early as February 22, 2005 the QPI predictions could have been available to the

executive management. The QPI predictions present a picture of impending disaster to

the executives since the project was scheduled to be completed in May.

Table 9. Contrast of EVM and QPI method

Contrast of EVM and QPI method

Status
Elements

EVM Project Reporting QI Methodology Predictions

Cost Within Budget Additional Budget Required
• 15,093 hours
• $1,660,230

Schedule On Schedule Project will slide 3.6 months
Quality None Available – Project

assumes that following
development methodology will
produce good quality product

QPI = 0.29
• 1.0 is desired
• Project is not recoverable

when an EVM PI is that low.

www.manaraa.com

 91

Research Tools and Data Gathering

Project Document Deliverable Selection Criteria

The documents selected for inspection were the requirements documents. An

example of a completed agile inspection Requirements Inspection Checklist was found in

Appendix D. When the project was completed, it used an earlier version of Macroscope

called P+. The entire suite of P+ documents was mapped to their equivalent documents

in the current version of Macroscope being used (Macroscope Version 4.5).

In the methodology description, there were a set of core deliverables and an

additional set of optional deliverables. The project produced 57 documentation

deliverables out of a possible 88 of the expanded methodology for a deliverable coverage

of 65% of the total that could be produced. If only the basic suite of deliverables was

considered, that reduced the number that could be produced by 21. In that case the

project produced 48 documentation deliverables out of a possible 67 of the expanded

methodology for a deliverable coverage of 72% of the total that could be produced.

Macroscope Requirements Construct

The study was concerned with those deliverables that were considered

requirements documents. As seen in Figure B-2 in Appendix B, the project completed

the Owner Requirements and Developer Requirements. The documents that had the light

red overlay on them were the ones that the project created. The project also appeared to

have not identified any specific unique user requirements as standalone deliverables. The

project manager stated that the project captured these requirements in design documents

www.manaraa.com

 92

that were created farther downstream in the process. There were 16 project requirements

documents, listed in Table A-7 in Appendix A that were inspected for the study.

Data Collection Process

Three architects volunteered to perform the agile inspections of the requirements

documents. Each reviewer received a copy of each document along with an inspection

sheet. The only thing required of the reviewer was to fill out the times and defect

numbers at the bottom and return them to the researcher.

Reviewer C was a highly regarded technical analyst and was initially quite

interested in the research. Reviewer A was the most skeptical at the start. Paradoxically,

Reviewer C never submitted an inspection result; his participation was voluntary and he

could not be coaxed into putting in the additional effort when it was finally needed.

Reviewer A ended up being the only Reviewer to inspect all the documents and submit

reports. Reviewer B reviewed five documents.

In the technique of agile inspections, the number of defects in a document was

twice the maximum number found by a single reviewer. While it would have been nice

to have more than one reviewer’s numbers, this turns out to be very beneficial for the

study since the proposed methodology was designed to add information on project status

in real world conditions and having a lack of resources is definitely a real world

condition. The data from the agile inspections was listed in Table A-8 in appendix A.

There were two reviewers for five documents and one for the rest; if more

reviewers had participated, then possibly more defects could have been discovered. This

would have made the already negative predictions of project status even more negative. It

www.manaraa.com

 93

would have changed the result in magnitude but not direction. We could logically

conclude the following:

1. The findings based on the reviewers’ inspections were suggestive and more

reviewers could only make the projection of project performance more

negative.

2. If the reviewer was the most technically excellent of those who would be

chosen if multiple reviewers were chosen, all other things being equal, then

his numbers would generally be the highest and therefore give an accurate

result.

3. If the reviewer is not the most technically excellent of those who would be

chosen if multiple reviewers were chosen, all other things being equal, then

his numbers would generally be lower than the highest.

4. If reviewer C were used, then his defect counts would logically be a minimum

going on the assumption that if reviewer A also participated, he would have

found more defects.

5. If the management proceeded with the analysis using reviewer C and it

showed a negative disparity to the status presented by the project, we could

assume that the disparity was real and probably greater than indicated.

6. The QPI method was designed to allow management to assess the project

status using the management-by-exception approach. In other words, if the

project showed Green and the QPI showed Red, then management would

delve further into the project status. If the project showed Green and the QPI

www.manaraa.com

 94

showed Green, then management would not delve further into the project

status. Any management action based on Yellow status would depend on how

the particular program was using the QPI method.

7. While a Green status using only reviewer C may have indicated the project

status may be in worse shape than the defect data indicates, the fact that

management was using only one reviewer and he was not their best

demonstrates the amount of weight they wanted to place on the QPI method.

8. Therefore we concluded that the use of one reviewer is logically technically

valid to present a negative impact and achieved the minimalist management

goals of the organization using the QPI method.

The defects per content page data points were analyzed for stability using the

statistical process control C Chart equations for defects. The results were shown in

Figure 7. The first observation that could be made was that the project’s process for

creating requirements defects was stable. While there was a peak of 4.0 defects/content

page for the P130 deliverable, that was still within the Upper Control Limit (UCL) of 4.6

defects/content page. In this case, the Lower Control Limit (LCL) was 0.0. That was not

always the case, but for a C Chart, the LCL can never go less than 0.0 since there can

never be negative defects.

www.manaraa.com

 95

1.6

0.5 0.4

1.1
1.3 1.2

4.0

2.2 2.2

0.2 0.3

0.9

0.2

1.2
0.9

1.7

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

P1
00

:
O

pp
or

tu
ni

ty
P1

20
:

D
is

po
si

tio
n

P1
20

:
R

el
oc

at
io

n

P1
20

:
Ac

qu
is

itio
n

P1
20

: C
ab

le
an

d
W

ire

P1
20

:
Ti

ck
et

in
g

P1
30

:
O

bj
ec

tiv
es

 o
f

P1
40

: C
on

te
xt

of
 th

e
Sy

st
em

P1
50

:
D

ef
in

itio
n

of
P1

70
/1

80
/1

90
(F

A1
):

P1
70

/1
80

/1
90

(F
A2

):

P1
70

/1
80

/1
90

(F
A3

):
P1

70
/1

80
/1

90
(F

A4
):

M
et

ric
s

P1
70

/1
80

/1
90

(F
A5

):

P1
70

/1
80

/1
90

(F
A6

):
P1

70
/1

80
/1

90
(F

A9
):

D
ef

ec
ts

 p
er

 C
on

te
nt

 P
ag

e

c-bar = 1.2

UCL = 4.6

LCL = 0

Figure 7. Control chart - agile inspections defects per content page (DD)

The next observation was that the c-bar for all the requirements documents was

1.2 defects per content page. Defects per content page was also described elsewhere in

the software development community as Defect Density (DD). DD could be applied to

documents or code (Defects/Thousand Source Lines of Code). As part of this study that

goes beyond traditional use of DD, the project manager and his supervisor were asked the

following questions:

1. In your estimating of project schedules, what is the DD that you expect in

your documentation?

2. What do you think is your actual DD for this project?

3. What goal DD would you like to project to achieve at some point?

www.manaraa.com

 96

4. Assuming that we are inspecting deliverables that have already been approved

to better understand project impact and not to fix the deliverables, what would

be the DD threshold that if crossed by a document would be sufficient quality

grounds for disapproving the document and not showing it as complete on

your schedule?

The project’s response to these questions was shown in Table 10. There was already a

preliminary indication of tension in the project in that the difference between the

Expected DD and the Anticipated DD was 0.5 major defects per page. That implied that

the project manager and supervisor already knew that the quality of their development

deliverables was low than they expected.

Table 10. Project Defect Density Expectations

Project Defect Density Expectations

Project role Expected DD Anticipated
Actual DD

Goal DD Reject DD

Project Manager 0.2 1.0 0.1 0.5
Supervisor 0.3 0.5 0.1 1.0
Study Average
DD

0.25

0.75

0.1

0.75

This table itself led to some interesting further observations. There was a gap

between what the project DD expects to be on a nominal project and what the project

leaders thought the actual DD was on this project. The ratio was 3 to 1 worse for this

project. The explanation in this case was that the Expected DD was what the project

would like to see but the Actual DD was what the project thought was the real case. Of

importance to the study in the use of the methodology was that the Expected DD was

www.manaraa.com

 97

what was used by the project to estimate the amount of rework needed to be inserted into

the project schedule.

Another observation concerns the reject DD threshold. There were 16 documents

being reviewed and it appeared that most of them would have been rejected had this

process been in place. The last column in Table A-7 in Appendix A, indicated whether

the deliverable would have been allowed to proceed (YES) or by what margin of DD if

failed. There were five deliverables that would have been allowed to proceed on in the

software development process and 11 deliverables that would have been required to be

redone. This was a red flag that there were major quality problems in the requirements.

These were deliverables that had successfully been through the process of a Capability

Maturity Model Integration Level 3 project which included peer reviews prior to

approval.

The c-bar of the set of deliverables was 1.2 DD. If all the defects were compared

to all the content pages as if they were one deliverable, then the DD was 330 defects

divided by 384 content pages resulting in a DD of 0.86. On both measures, c-bar and

cumulative DD, the project requirements deliverables DD as a whole was greater than the

DD reject threshold of 0.75 DD.

The next data point to collect from the Agile Inspection data was the amount of

time that it took to gather the information. The total amount of minutes used by all

reviewers to inspect the deliverables and record the results was 540 minutes or 9.0 hours.

This was one of the significant appeals of this method, especially for a resource limited

project. For an investment of only 9.0 hours, which was insignificant in almost any

www.manaraa.com

 98

project, but especially for this project which ultimately used 39,383 hours, the project

manager and executive management would have information about the anticipated impact

on the project that they didn’t have previously. This information was available early in

the project life cycle just after the requirements were completed. If the requirements

gathering process was having problems, we could anticipate that there would be further

challenges farther down the waterfall methodology. It should be noted that there was

nothing in this methodology that required the reviewers to wait for all requirements

documents to be completed. The inspections could have been completed as the

requirements documents were completed and the affect on the project, either positive or

negative, could be cumulatively assessed.

The Parametric Equation for Projected Project Impact

The structure of the simulation of the QPI method was parametrically defined for

two major reasons. It allowed the step by step methodical construction of the

methodology impact on the project to be generated, and there were necessary

assumptions made in some of the independent variables in the construction of the

methodology. These assumptions could be challenged by other project or management

personnel. By allowing parametric construction, these assumptions could be changed to

fit the culture of the project being examined without doing damage to the simulation and

at the same time satisfying those participating in the use of the QPI method in their

organization. Appendix C contained a list of all the variables alphabetically. Figure B-5

and Figure B-6 in Appendix B showed the inputs and outputs of the QPI method using a

spreadsheet to capture the parametric equations within the QPI method. The IVs were in

www.manaraa.com

 99

blue text, the DVs were in black text; the red text was the final process output for the

method. The research process flow is shown conceptually in Figure 8 and in detail in

FigureB-4 in Appendix B. The requirements documents in the project were all inspected

for defects. The totals of the inspections, the pages inspected and the project parametric

values were input into the QPI simulation which produced the following projected project

impacts:

1. QPI = 0.29

2. Schedule Impact = 3.6 months

3. Resource Impact = 14,764 hours

Figure 8. Conceptual research process flow.

Defects Variables - Quality

In the QPI method simulation the total defects (TRD) for the project requirements

documents inspected were 330 defects. The total of the content pages (TCP) for the

www.manaraa.com

 100

project requirements documents inspected was 384 content pages. The defect density for

this project was 0.86 defects per content page. The expected defects (ED) were 0.25

defects per content page from Table 10. The unanticipated major defects detected per

content page were 0.61 defects per content page.

For all the documents in this project the total number of defects was 990 major

defects (TDD). The total unanticipated major defects, variable UD, were 702 major

defects. In this project, some of the defects that had been found in the inspections were

probably also found and fixed by the project prior to going into the test phase. The

consensus of the project was that the percent of defects found prior to test was about

50%. For the purpose of this study the number of requirements defects found and fixed

prior to the software getting to test was 351 defects. Using the criteria of estimated

divided by actual a quality performance index (QPI) was created. In this project the QPI

at the end of the requirements phase was ED (0.25) divided by DD (0.86) which resulted

in a QPI of 0.29.

Effort Variables - Schedule

Design/code phase effort. The effort to find and fix requirements defects in the

design/code phase was the dependant variable DE which was 3,510 hours. This

translated into the dependent variable of additional months of schedule impact AME

which was 0.9 months of project schedule impact due to unanticipated defects found

during the design/code phase of the project.

Test phase effort. The independent variable of percent of defects found in test PDFIT

was typically 33%. The dependant variable of the effort needed to find and fix all the

www.manaraa.com

 101

requirements defects found in the test phase TE was 11,583 hours which converts to the

dependant variable AMT which was 2.8 months of project schedule impact due to

unanticipated defects found during the design/code phase of the project. The total

projected schedule impact on the project based on the unanticipated requirements defects

found in both the design/code and test phases was cumulative. The dependant variable of

total schedule impact TAM was 3.7 months.

Effort Variables - Cost

The effort in hours could also be converted into cost. The company standard

personnel rate was the independent variable RAP which was $110 per hour. The

projected cost impact to the project was a dependant variable TC which was

$1,660,230.00. If no additional budget was added and the project was re-baselined, the

CSI would be less than 1.0 at the completion of the project.

Validation of the Agile Inspection Methodology

National Institute of Standards and Technology (NIST) Defects Model

The National Institute of Standards and Technology had produced a defects model

for software development based on accumulated data from many software projects

(NIST, 2002) as cited by Borland (Borland, 2006). The percentages assigned to each

phase by the model were captured in the second column of Table 11.

Project Defects Data

The next step was to compare this model to the available project data to infer a

DD independent of the Agile Inspection data. The project under study did capture both

pre-release defects and post-release defects. For this project, the number of pre-release

www.manaraa.com

 102

defects that were logged was 1,447. The number of post-release defects that were logged

was 151. The relationship of the project to the NIST model is shown in the 3rd column of

Table 11.

NIST Defects Model Predictions of Requirements Defects

There were two data points for calculating the number of Requirements/Design

defects using the NIST model: prerelease defects and post-release defects. Due to the

way that the defects measures were logged into the measurement and metrics tool in this

Capability Maturity Model Integration Level 3 group, the number of post-release defects

did not represent the total number of post release defects associated with the particular

release under study. The pre-release defects for this release were, however, all associated

with the release. Therefore the number of pre-release defects more accurately reflected

the true state of the software development effort for the release when using the NIST

defects model. The pre-release defect count was used, resulting in the total number of

defects for the project of 2,631 (1447/0.55). The number of Requirements defects would

then be 395 (2631*0.15). This calculation was shown in the 4th column in Table 11.

NIST Defects Model Compared to the Agile Inspection Methodology

The number of defects found in the project requirements documents using the

Agile inspection methodology was 324. This number was less than the number that the

NIST model produced but the scope of the inspections was against only requirements

documents. The application of the NIST model to the project and the comparison of the

Agile Inspection results were captured in the 5th column of Table 11.

www.manaraa.com

 103

The comparisons of the two sources of data were mutually reinforcing. By having

actual defect data from the software and comparing it with the inspection defect data

obtained, we were able to conclude that each set of data was within the parameters of the

NIST model. The NIST model was suggestible that the Agile Inspection methodology

for determining number of major defects was correct and a useful methodology.

Table 11. NIST Defect Model and Agile Inspections Methodology

NIST Defect Model and Agile Inspections Methodology

NIST Model % Defects
per Phase

Defects
Logged

NIST Defects
Predicted

Inspection
Defects

Requirements/Design 15% 395 324

Code/Unit Test 20%

Test Total (incl Beta) 55% 1447

Post-Release 10% 151

Model Total 2631

QPI method Predictions verses Actual Project Schedule Performance

Actual Project Schedule

The project under study was started on October 1, 2004. At the time it was

started, the scheduled completion date was the end of May 2005. The project developed

its requirements documents through the 4th quarter of 2004 and early into 2005.

According to the project manager, the requirements were complete on the 22nd of

February. If the management were using the QPI method, they would have known that

www.manaraa.com

 104

the QPI method was predicting a 3.6 month slide in the schedule. The initial schedule

with a QPI method analysis superimposed at the correct date was shown in Figure 9.

Figure 9. Project initial schedule and QPI predictions

Project Actual Schedule Performance

The project did go through some major schedule perturbations. One month before

the project was originally scheduled to be completed, a 4-month slide was added to the

delivery data. During that four month extension, the project went through a complete re-

baseline that now had it completing in June 2006. Having finally gone through a

thorough analysis of what it would take to deliver to the customer what they wanted, the

customer declared that June 2006 was way too late. They needed it by February 2006.

With the customer’s acknowledgement that moving the delivery date up by that much

would produce a product that had not be thoroughly checked out, the project agreed to the

new proposed date.

As the project was getting ready to deliver the software, the customer discovered

that they had left of a critical requirement that made the software unusable as coded. The

www.manaraa.com

 105

incorporation of this additional requirement and the subsequent retesting resulted in the

software being delivered at the end of July 2006. Then the project spent the next five

months fixing major defects that were still in the delivered software. This project history

was captured in Figure 10.

Figure 10. Actual schedule history for the project under study

Figure 10 shows the original schedule with QPI predictions as well as the additional

history of the project that included direct customer intervention and a major requirements

change at the end of the project.

Research Questions Findings

Research Question 1

The first research question was, What are the requirements for software quality

during project execution, prior to the test phase that will produce reliable predictions of

future impacts on the cost and schedule commitments of the project? The findings of this

study indicated that there were software quality attributes that can be used to produce

reliable predictions of potential future project impact to both schedule and resources. The

www.manaraa.com

 106

emphasis on this study was to determine if there was a quality aspect to the status of the

project as opposed to the status of the product that the project is producing. The

requirements for a prediction include expected values being compared to actual values.

The requirements for software quality were defects with both expected and actual values.

The expected value of quality was necessary so that status could be assessed against it.

This status of the product in the project process contains information that was unavailable

by examining cost or schedule information.

Research question 1 findings.

1. The QPI method was unique in definition and implementation.

2. The QPI method produced reliable predictions of future impacts of project

cost and schedule.

3. The Expected Defect Density of software development products were a

requirement for the QPI method to succeed.

4. The Actual Defect Density of software development products were a

requirement for the QPI method to succeed.

5. The prediction capability of the QPI method derived from the difference

between the expected defect density and the actual defect density.

6. The use of a single inspector produced industry usable and academically

suggestible results.

7. Management commitment was needed to ensure availability of inspection

resources.

www.manaraa.com

 107

Research Question 2

The second research question was what is a software quality measurement

technique currently available that can be adapted as an in-process (before testing) project

quality measure? The findings of this study indicated that inspections of software

development products (in this study requirements documents were analyzed) was a

process that could be adapted from using the inspections information to adjust the quality

of the product to using the inspections information to adjust the quality of the project

status. This study showed that the agile inspections technique was applicable to

providing valid inspections information. The powerful aspect of agile inspections was

that their resource requirements are minimal compared to the cost of formal (Fagan or

PEP) inspections. In this study, for an investment of 540 minutes (9.0 hours out of

39,383 hours in the project), a predicted 3.6-month schedule impact was predicted when

the project status was being shown as on schedule.

Research question 2 findings.

1. The comparison of the NIST model with the agile inspection results produced

a suggestible correlation with respect to the integrity of the agile inspection

process.

2. Inspections and Agile Inspections in particular could be adapted to be used as

part of a project status QPI method.

3. The impact of agile inspections on the project resources was minimal with no

impact on the project schedule.

www.manaraa.com

 108

Research Question 3

The third research question was what is the in-process (before testing) project

impact based on product quality that requires a communication mechanism or method not

currently part of the structure of established project management reporting practices?

This study used the currently existing executive project status communication tool of

EVM and modified it to add a project quality component in addition to the cost and

schedule component. A QPI method was developed that attributed to quality status the

same characteristics as schedule and cost status (expected status verses actual status).

The QPI produced an in-process status prior to the test phase of the project.

QPI is not currently part of the established project management structure of EVM,

so in that sense it clearly satisfied the research question. Further, because it had the same

construct as the existing SPI and CPI in Earned Value Management, it was capable of

adding information to executives without the executives having to learn a new

terminology relating to software development, quality, or project management.

Research Question 3 Findings.

1. QPI was a new quality communication mechanism for project status.

2. QPI had the same characteristics as the existing project status method of EVM

and can be considered the third performance indicator of EVM (the first two

being CPI and SPI).

3. Presenting project quality in terms of QPI required no additional training of

executive management to correctly interpret the QPI status information.

www.manaraa.com

 109

Conclusions

As stated at the beginning of the chapter, when the project researched in this study

completed releasing their requirements documents, the project status was on schedule and

within budget according to the parameters set by the organization. Using the Quality

Performance Index (QPI) method, this study determined that the following information

applied to the project:

1. The QPI for the project was 0.29. In the Earned value Management

methodology, no project can recover from a performance index that low.

To continue, it must be re-baselined.

2. A schedule slide of 3.6 months was projected.

3. An additional resource impact of 14,764 hours was projected.

Had the QPI method been available at that time, the executive team reviewing the project

status would have know that the project was in major trouble despite the green status

being reported by the project manager.

Summary

The results from the use of the QPI Method on the selected project were quite

dramatic. The use of the QPI method cost the project an additional 540 minutes (9.0

hours) of effort. The dividends from that effort were way out of proportion on the

positive to the effort involved. This was in spite of the fact that the inspection conditions

were less than ideal. Three reviewers were requested to participate in the inspections;

only two did and only one inspected all the documents. This is what happened in the real

world of resource conflicts within organizations. It was actually a very good test as to the

www.manaraa.com

110

effectiveness of the QPI method in groups that are struggling, which is where these

project status problems usually occur. From a research point-of-view, more data going

into the methodology would have definitely been preferred; see suggestions for further

research in the next chapter.

If the QPI method had been incorporated into the project methodology, then it

would have told the executives to expect approximately a 4-month slide in the schedule

when they still had three months to go on their current schedule. The QPI of 0.29 was at

such a low value that projects with similar SPI and CPI values do not recover without re-

baselining. This would lead management to be very skeptical about any attempt at a

recovery plan within existing cost and schedule constraints. The agile inspection method

was vindicated by validating the defect counts that came out of the methodology against

the NIST defects model. The next chapter will include a summary of the study,

suggestions for further research and potential influences for social change.

www.manaraa.com

 111

Chapter 5: Summary, Conclusions and Suggestions for Further Research

This chapter represents the conclusions and implications derived from the results

of testing the three research questions, It covers (a) the general research conclusions, (b)

the application development implications of the research findings, (c) the management

implications of the research findings , (d) recommendations for further research, and (e)

the implications for social change.

General Research Conclusions

The literature review revealed a plethora of research and practical implementation

activity in the problem area over the last 40 years. Five of its major areas were aimed at

the three research questions. The QPI method was developed as a result of attempting to

gain a better understanding of all the research in disciplines not previously integrated and

the implementations, and thus bring about a comprehensive viewpoint.

Using deliverable inspection data as a measure of project status—as opposed to

product status—caused the project and management teams to change their viewpoints on

quality. They could now ask new questions about the defect-generating capability of the

project or organization, as well as about the concept of a certain known defect density

that the project or organization could live with given the resource requirements necessary

to further reduce the defect density.

With the introduction of the QPI method, a more integrated (holistic) approach

could be applied to project management. QPI gave interested personnel a noninvasive

method of determining project status, either in real-time for project and executive

information, or as part of a process improvement discipline for the organization.

www.manaraa.com

 112

Application Development Significance and Implications

The application development implication is that a project does have a measurable

defect-generation capability. This capability has been factored into project estimates,

whether consciously or unconsciously. This study heightens awareness of this fact and

provides an incentive for projects to embrace this QPI method as a best practice—if

nothing else, for self-protection against project surprises.

Agile Inspections

Agile inspections took fewer resources than formal inspections (Fagan or PEP).

This affordability factor for information made the knowledge gained from the Agile

Inspections very attractive to the educated project manager. The finding—that the Agile

Inspection methodology is suggestive with just one reviewer—should boost the project

manger’s interest in implementing this technique in the project work breakdown structure

(WBS). If implemented, it would also allow management more flexibility in allocating

resources for agile inspections, depending on management’s intention to use the data for

project status. The more resources allocated, the more accurately the inspection data

would reflect the quality of the deliverables inspected.

As further research progresses in the use of agile inspections as part of a cost

effective component of the QPI method the following needs to be noted:

1. While the use of less than three inspectors and sometimes just one produced

results that a software development organization could use, this study did not

in itself validate the correctness of the data produced from such a process

from a professional and academic viewpoint.

www.manaraa.com

 113

2. When further research is conducted as suggested in the next section,

additional care needs to be taken to advance the study of the validity of

inspectors in a resource challenged environment.

3. The ultimate academic goal would be to produce a QPI construct that delivers

rigid results of the same magnitude as CPI and SPI.

QPI Method

The QPI Method if implemented by the project manager provides another

dimension of project status. What it provides for the project manager is an independent

assessment of the status of the deliverables. Currently, when a deliverable is completed,

the project status took full credit for the completion without any negative impacts. Using

the QPI method provides a viewpoint that asserts there may be negative impacts on the

project later on that would temper the project’s taking full credit for the deliverable.

Management Significance and Implications

QPI Method

The origins of this study stemmed from a concern about the management

implications of the perception of software quality as received when reviewing the status

of software projects. The management implications of the QPI method addressed these

concerns by executives on the validity of the software project status being presented to

them. With the implementation of the QPI method, management has an independent

assessment of an aspect of the project status that was previously not available.

www.manaraa.com

 114

Executive Communications

The QPI method fits into the already existing program management structure of

EVM. As a result, most of the managers who will be using the QPI method would not

have to learn new concepts or technical terms. The implications of a high or low QPI

were the same as a high or low SPI or CPI. The knowledge that a performance index in

EVM required a planned value and an actual value would reinforce in management’s

project world view that there was a realistic expected defect density for a project with the

implied recognition that a project could continue successfully even if there are known

defects in the requirements.

Potential for Further Research

Research Question 1

Research Question 1 asks, “What are the requirements for software quality during

project execution, prior to the test phase that will produce reliable predictions of future

impacts on the cost and schedule commitments of the project?” Future studies by other

researchers are suggested in the following areas:

1. Study additional IT projects.

2. Gather more inspection data.

3. Study Agile inspections results with more consistent support for inspector

resources (between three and five inspectors).

4. Study projects that use different development methodologies.

5. Study projects that are on different Capability Maturity Model Integration

maturity Levels.

www.manaraa.com

 115

6. Study embedded software development projects.

Research Question 2

Research Question 2 asks, “What is a software quality measurement technique

currently available that can be adapted as an in-process (before testing) project quality

measure?” Future studies by other researchers are suggested in the following areas:

1. Other defect detection techniques that can increase the precision of the

number of defects in a software development product.

2. Other quality assurance (QA) processes within the software development

process that can benefit from the agile inspection data given its current

limitations.

3. New QA processes to be created as a result of the additional information

provided by the agile inspections.

Research Question 3

Research Question 3 asks, “What is the In-Process (before testing) project impact

based on product quality that requires a communication mechanism or method not

currently part of the structure of established project management reporting practices?”

Future studies by other researchers are suggested in the following areas:

1. Develop a project quality indicator for non EVM project management

methodologies.

2. Determine the affect of management’s embracing the QPI method, on the

actions management takes compared to non QPI management actions.

www.manaraa.com

 116

The Impact of the QPI Method and Its Influences on Social Change

The ability of the QPI method to provide early and accurate information on the

status of an IT software development project would have an enormous impact on the

software development, software project management and software quality professions

and the organizations utilizing these professions to produce working software. With the

early guidance that the QPI method provides, decisions could be made about re-scoping

or cancelling projects long before the disastrous results of building and testing the

products shows the dire straits of the project.

An immediate impact would be millions if not billions of dollars in software

development cost saved every year in IT software development and embedded software

development budgets. With an increased bottom line, the software development

organizations would be able to make investments in improvements of their operations,

yielding even more savings and improvements.

The enhanced performance of the organizations would allow them to respond

more quickly to external threats. Government organizations could spread the taxpayers’

dollars over more projects that would enhance our security and liberty. Long-range

business plans and commitments could respond in a more agile manner to changes in the

market and/or regulatory environments. The money saved at institutions of higher

learning could be refocused into more contemporary class content and pay professors and

staff a more equitable wage when compared to industry.

www.manaraa.com

117

Summary

This study developed a new tool in the battle to control software development

projects: the QPI method. Much as a velocity is composed of two components, speed and

direction, so the application of the QPI method has two components, direction of the

project and the magnitude of that direction. The study showed that a project direction can

be obtained using the QPI method but in this study, the magnitude of that direction was

only suggestible; more research is necessary to get statistically relevant magnitude

information. The combination of the modification of EVM along with the minimal

resource requirements needed to implement the QPI method has very positive social

implications since large projects use EVM and have the potential for the most cost

savings and efficient use of resources, both public and private.

www.manaraa.com

 118

References

Abba, W. F. (1997). Earned Value Management-Reconciling Government and

Commercial Practices. Program Manager. 01997114. Jan/Feb97. Vol. 26 Issue 1.

Alstad, J. (2004). Bottle and Sell WGS SCP Detailed Design Process. SEPG-261, Process

Improvement Proposal. Boeing Co., Chicago, IL. March 26, 2004.

Anbari, F. T. (2003). Earned Value Project Management Method and Extensions. Project

Management Journal. December 2003. p. 12-23.

Anthes, G. H. (2004). Quality Model Mania. Computerworld. March 08, 2004.

Auruml, A., Petersson, H. and Wohlin, C. (2002). State-of-the-art: software inspections

after 25 years. Software Testing, Verification and Reliability. 12:133–154 (DOI:

10.1002/stvr.243). 2003.

B-SEPG (2004). Boeing Software Engineering Process Group – Wichita. Boeing

Intranet. 2004.

Baldrige (2004). Baldrige National Quality Program. National Institute of Standards and

Technologies (NIST). Gaithersburg, MD 20899-1070.

Basili, V. R., McGarry, F.E., Pajerski, R., & Zelkowitz, M. V. (2002). Lessons learned

from 25 years of process improvement: the rise and fall of the NASA software

engineering laboratory. Proceedings of the 24th International Conference on

Software Engineering. International Conference on Software Engineering.

Association for Computing Machinery. New York, NY. P79-89.

Bauer, F. L. (1969). Software Engineering. Report on a conference sponsored by the

NATO Science Committee, Garmish, Germany, October 7-11, 1968.

www.manaraa.com

 119

BDS (2001). Boeing Data Services: Appendix A — Glossary and Acronym Definitions.

Boeing. Retrieved from Boeing Intranet. 2001.

Billings, C. and Clifton, J. (1994). Journey to a Mature Software Process. IBM Systems

Journal. Vol. 33 Issue 1. p. 46-61.

Blaine, J. D. (2004, July 1,). Three Easy Metrics to Help Ensure Project Success. Gilb

London 2004 Evo Symposium. The New Connaught Rooms, Covent Garden,

London,

Blanco, Lt. Cmdr. V. D. (2003, March/April). Earned Value Management: A Predictive

Analysis Tool. The Navy Supply Corps Newsletter. Retrieved from

http://findarticles.com/p/articles/mi_m0NQS/is_2_66/

Boehm, B. (1991). Software Risk Management: Principles and Practices. Institute of

Electrical & Electronics Engineering Software, vol. 8, no. 1, pp. 32-41, Jan./Feb.

1991.

Boehm, B., & Turner, R. (2003). Balancing agility and discipline: A guide for the

perplexed. Boston, MA: Addison-Wesley Professional. Pearson Education, Inc.

Boehm, B., Horowitz, E., Madachy, D., Reifer, D., C., Bradford K., Steece, B., Brown,

A. Winsor, C. S., & Abts, C. (2000). Software cost estimation with cocomo II. Upper

Saddle River, NJ. Prentice Hall PTR.

Boehm, B. (1981). Software engineering economics. Upper Saddle River, NJ: Prentice

Hall PTR.

Borland (2006). Software Quality Management. Borland Software Corporation. April

2006. Retrieved from http://www.borland.com/

http://findarticles.com/p/articles/mi_m0NQS/is_2_66/
http://www.borland.com/

www.manaraa.com

 120

Brandon Jr., D. M. (1998). Implementing Earned Value Easily and Effectively. Project

Management Journal. June 1998. Vol. 29. Issue 2. p11-18

Bush, M. (1990). Improving Software Quality: The Use of Formal Inspections at the Jet

Propulsion Laboratory. Experience Report. IEEE 1990. p.196-199.

Cass, D. J. (2000). Earned Value Programs for US Department of Energy Projects. Cost

Engineering. Vol. 42. No. 2. February 2000. p.24-43.

Chang, A. S.-T. (2001). Defining Cost/Schedule Performance Indices and Their Ranges

for Design Projects. Journal of Management in Engineering. April 2001. p. 122-130.

Charette, R. N. (2005). Why Software Fails: We waste billions of dollars each year on

entirely preventable mistakes. IEEE Spectrum. September 2005.

CMD (2004). CMD Symphony. CMD Corporation. Retrieved from

http://www.cmdcorp.com/index.html.

CMM (2007). Capability Maturity Model®. Software Engineering Institute. Carnegie

Mellon University. Pittsburgh, PA.

CMMI (2007). Capability Maturity Model® Integration. Software Engineering Institute.

Carnegie Mellon University. Pittsburgh, PA.

CMMI (2006). CMMI for Development, Version 1.2: Improving Processes for Better

Products. CMU/SEI-2006-TR-008. Software Engineering Institute. Carnegie Mellon

University. Pittsburgh, PA. August 2006.

Crockett, R. O. and McGregor, J. (2006). Six Sigma Still Pays Off At Motorola. The

Corporation. Business Week. December 4, 2006.

http://www.cmdcorp.com/index.html

www.manaraa.com

 121

Conway, W. E. (2007). Chairman & CEO, Conway Management Co. Retrieved from

http://www.conwaymgmt.com/.

Cooper, D. R., & Schindler, P. S. (2003). Business research method (8th ed.). New York,

NY: McGraw-Hill.

Crymble, S. (2001). Quality Systems Overview: ITIL/ ISO/ CMM & Malcolm Baldrige.

Toronto Spin. 2851 John St., PO Box 42073, Markham, ON L3R 5R7. Sept 20, 2001.

D&C (2006). Macroscope: Design and Construction. Macroscope Productivity Centre.

Retrieved from

http://macroscope45.web.boeing.com/DMRPEn/html/En_P_Phase04.html

DeMarco, T. (1997). The deadline: A novel about project management. New York, NY:

Dorset House Publishing Company.

DeMarco, T and Lister, T. (1987). Peopleware: Productive projects and teams. New

York, NY: Dorset House Publishing Company.

DeMarco, T. and Lister, T. (2003). Waltzing with bears: Managing risk on software

projects. New York, NY: Dorset House Publishing Company.

DeMarco, T. (2001). Slack: Getting past burnout, Busywork, and the myth of total

efficiency. New York, NY: Dorset House Publishing Company.

DeMarco, T. (1982). Controlling software projects: Management, measurement and

estimation. Englewood Cliffs, NJ: Prentice-Hall.

DeMarco, T., & Plauger, P. J. (1979). Structured analysis and system specification.

Upper Saddle River, NJ: Prentice Hall PTR.

DMR (2004). DMR Consulting. Fujitsu, Inc. 2004.

http://www.conwaymgmt.com/
http://macroscope45.web.boeing.com/DMRPEn/html/En_P_Phase04.html

www.manaraa.com

 122

Dromey, R. G. (1998). SOFTWARE PRODUCT QUALITY: Theory, Model, and

Practice. Software Quality Institute. Griffith University, Nathan, Brisbane, QLD 4111

AUSTRALIA. Volume 15. Issue 02. 09/03/98

DSDM (2004). Dynamic System Development Method. DSDM Consortium, Ltd. 2004.

Evensmo, J. and Karlsen, Dr. J. T. (2004). Reviewing the Assumptions Behind

Performance Indexes. AACE International Transactions. CSC.14. 2004. p. 14.1-14.7.

Finn, J. (2001). Implementation of the Agile Review/Extreme Inspection Method.

Retrieved from e-mail to Tom Gilb from Jeff Finn, Microsoft. May 22, 2001.

Fujitsu (2002). Macroscope. Fujitsu consulting (Canada), Inc. Version 4.0. April 2002.

GAO (2008). Defense Acquisitions – Progress Made in Fielding Missile Defense, but

Program Is Short of Meeting Goals. GAO-08-448, March 2008.

Gilb, T. (2009). Agile Specification Quality Control: Shifting emphasis from cleanup to

sampling defects. Testing Experience: The Magazine for Professional Testers. March

2009. p. 87-93.

Gilb, T. (2005). COMPETITIVE ENGINEERING: A Handbook for Systems Engineering,

Requirements Engineering, and Software Engineering Using Planguage. Elsevier

Butterworth-Heinemann. Linacre House, Jordan Hill, Oxford OX2 8DP, UK. 2005.

Gilb, T., & Gilb, K. (2004). Agile Reviews: the use of sampling for ‘measurement’

reviews (for requirements, design, test plans, test cases, code). Specification Quality

Control. 2004.

Gilb, T. (1988). Principles of software engineering management. London, UK: Addison-

Wesley: Pearson Education Limited.

www.manaraa.com

 123

Gilb, T., & Graham, D. (1993). Software inspections. London, UK: Pearson Education

Limited.

Gilray, J. J. (1996). Applying the code inspection process to hardware descriptions.

Hewlett-Packard Journal, 47 (1), 68-72.

Glass, R. L., & DeMarco, T. (2006). Software creativity 2.0. Atlanta, GA. developer.*

Books.

Harrington, H. J., & Harrington, J. S. (1995). Total improvement management: The next

generation in performance improvement. New York, NY: McGraw-Hill.

Harrington, H. J. (1991). Business process improvement: The breakthrough strategy for

total quality, productivity, and competitiveness . New York, NY: McGraw-Hill.

Hedger, R. J. (2003). High Quality Low Cost Software Inspections. . IBM Systems

Journal, Vol. 42, No. 2. 2003. p.397-399.

Hille, H. (1997). Fundamentals of a Theory of Measurement. Lecture delivered on the

Spring Meeting of the German Physical Society. Ludwig-Maximilians University.

Munich, Germany. March 1997.

Hopkins, W. G. (2000). Quantitative Research Design. Dept of Physiology and School of

Physical Education. University of Otago, Dunedin, New Zealand. Sports Science

Perspectives: Research Resources. 2000.

Houdek, F., Schwinn, T. and Ernst, D. (2002). Defect Detection for Executable

Specifications – An Experiment. International Journal of Software Engineering and

Knowledge Engineering. Vol. 12, No. 6. 2002. p. 637-655.

www.manaraa.com

 124

IBM (2003). Using the RUP for small projects: Expanding upon Extreme Programming.

Rational, IBM. 2003.

ISACA (2009). Control Objectives for Information and related Technology (COBIT).

ISACA. 3701 Algonquin Rd., Suite 1010, Rolling Meadows, IL. 60008. 2009.

I (2006). Macroscope: Implementation. Macroscope Productivity Centre. Retrieved from

http://macroscope45.web.boeing.com/DMRPEn/html/En_P_Phase05.html

ITIL (2006). Information Technology Infrastructure Library. Office of Government

Commerce. Norwich, Norfolk NR7 0HS UK.

Jones, C. (2004). Software Project Management Practices: Failure versus Success.

CrossTalk: The Journal of Defense Software Engineering. October 2004. P: 5-9.

Kan, S. H. (2002). Software Quality Metrics Overview. Addison-Wesley Professional.

Pearson Education, Boston, MA. Dec. 20, 2002.

Knutson, C. and Carmichael, S. (2001). Verification and Validation. Embedded Systems

Programming. June 2001. p. 24-36.

KovacsBurns, K. (2005). Non-experimental Research Designs. Nursing 503, University

of Alberta, Alberta, Canada. Oct. 5, 2005.

Lee, M-C. and Chang, T. (2006). Applying TQM, CMM and ISO 9001 in Knowledge

Management for software development process improvement. International Journal

of Services and Standards 2006 - Vol. 2, No.1 pp. 101 - 115

Lewis, J P. (1995). The Project Manager’s Desk Reference. Chicago. IRWIN

Professional Publishing. 1995.

http://macroscope45.web.boeing.com/DMRPEn/html/En_P_Phase05.html

www.manaraa.com

 125

Lindeman, J., Romero, B. and Tavel, H. (1999). Putting Executive Scorecards on the

Web With SAS® Software. Proceeding of the 24th Annual SAS® Users Group

International Conference. April 11-14, 1999. Miami Beach, FL. P. 244-248. 1999.

Lutenist, T. (2006).Capability Maturity Model. Everything2 Feb. 22, 2006. Retrieved

from http://everything2.com/title/Capability%2520Maturity%2520Model

Macroscope (2002). 'Methodware' Magic Quadrant for Software Processes. Boeing Co.,

Chicago, IL. 2002.

Macroscope (2004). Macroscope Version 4.5. Boeing Co., Chicago, IL.. Retrieved from

Boeing Co. Intranet.

Major, J., Pellegrin, J. F., Pittler, A. W. (1998). Meeting the Software Challenge: Strategy

for Competitive Success. Research Technology Management. Jan/Feb98, Vol. 41

Issue 1. p. 48-56.

ME1 (2005). ME1-Measurement-Program-Overview. Boeing Co., Chicago, IL Retrieved

from Boeing Co. intranet.

Manganelli, R. L. & Klein, M. M. (1994). The Reengineering Handbook: A Step-By-Step

Guide to Business Transformation. AMACOM, American Management Association,

New York, NY. 1994.

McConnell, S. (2002). Cost of Software Quality: Delivering Software Project Success.

Construx Software Builders, Inc. 2002.

Mendel, T., Garbani, J. P., Ostergaard, B. & van Veen, N. (2004). Implementing ITIL:

How To Get Started. Best Practices. Forrester. Sept. 21, 2004.

http://everything2.com/title/Capability%2520Maturity%2520Model

www.manaraa.com

 126

NASA (2006). Goal-Question-Metric (GQM). Experience Factory. Software Engineering

Laboratory. NASA. 2006.

NASA (2007). What Is Earned Value Management? NASA. 2007.

NAS (1998). Total Ownership Cost: Implementation Guidebook Version 1.0 (Revised).

Naval Air Systems. US Government. 1998.

Naur, P. and Randell, B. (1969). Software Engineering: Report of a conference sponsored

by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels,

Scientific Affairs Division, NATO. 1969. 231pp.

NIST (2002). The Economic Impact of Inadequate Infrastructure for Software Testing.

United States Department of Commerce, National Institute of Standards and

Technology (NIST). May 2002.

OE (2006). Macroscope: Opportunity Evaluation. Macroscope Productivity Centre.

Retrieved from

http://macroscope45.web.boeing.com/DMRPEn/html/En_P_Home.html

Olson, T. (2008). Private discussions between Tim Olson and the author concerning

proprietary methods. Museum of Flight, Seattle, WA. March 18, 2008.

Orci, T. (1999). Software Metrics for Process Improvement Experiments. European

Systems & Software Process Improvement and Innovation (EURO SPI2) - EuroSPI99.

1999.

PA (2005). Macroscope: Preliminary Analysis. Macroscope Productivity Centre.

Retrieved from

http://macroscope45.web.boeing.com/DMRPEn/html/En_P_Phase02.html

http://macroscope45.web.boeing.com/DMRPEn/html/En_P_Home.html
http://macroscope45.web.boeing.com/DMRPEn/html/En_P_Phase02.html

www.manaraa.com

 127

Park, R, E., Goethert, W. B. & Florac, W. A. (1996). Goal-Driven Software Measurement

— A Guidebook. HANDBOOK. CMU/SEI-96-HB-002 Software Engineering Institute

Carnegie Mellon University. Pittsburgh, PA. August 1996.

PCMM (2008). People Capability Maturity Model: Version 2.0. Frequently Asked

Questions. Software Engineering Institute. Carnegie Mellon University. Pittsburgh,

PA. 2008.

Petrasch, R. (1999). The Definition of ‘Software Quality’: A Practical Approach.

FastAbstract ISSRE. 1999.

PMBOK (2004). A Guide to the Project Management Body of Knowledge, 3rd Edition.

Project Management Institute. Newtown Square, PA. November 2004.

Praxiom (2007). ISO 9001 2000. Praxiom Research Group Limited, Edmonton, Alberta.

2007.

Primavera (2005). Earned Value Graphs reporting from Primavera Project Manager for

Enterprise. Primavera. Dec. 12, 2005.

QuantumPM (2004). QuantumPM, LLC. CMD Corporation. 2004.

Ragavan, C. & Hook, C. S. (2005). Fixing the FBI. Us News and World Report. March

28, 2005.

Rational (2001). Rational Unified Process: Process Made Practical. Rational Software

Corporation. G-060E; Rev. 9/01: Part No. 800-024698-000. 2001.

Roberts, D. (2010). Google China Hacking Brouhaha Raises Business Concerns.

Business Week. January 15, 2010. Retrieved from

www.manaraa.com

 128

http://www.businessweek.com/globalbiz/blog/eyeonasia/archives/2010/01/google_br

ouhaha.html

Ross, J. (1999). Ways of Approaching Research: Quantitative Designs. R&RA Session 2.

April 10, 1999. Retrieved from

http://www.fortunecity.com/greenfield/grizzly/432/rra2.htm.

Rothman, J. (2000). What Does It Cost You To Fix A Defect? And Why Should You

Care? Rothman Consulting Group. October, 2000. Retrieved from

http://www.jrothman.com/Papers/Costtofixdefect.html

Rus, I., Halling, M. and Biffl, S. (2003). Supporting Decision-Making in Software

Engineering with Process Simulation and Empirical Studies. International Journal of

Software Engineering and Knowledge Engineering. Vol. 13, No. 5. p. 531-545. 2003.

SBA (2009). Section H – Special Contract Requirements: SECURITY & CMM

CONTRACT REQUIREMENTS. US Small Business Administration. Washington,

DC. Retrieved from

http://www.sba.gov/idc/groups/public/documents/sba_program_office/sba_ocio_secu

rity_cmm_req.pdf

SCEA (2003). Earned Value Management Systems (EVMS): Tracking cost and

schedule performance on projects. Developed by TASC. The Society of Cost

Estimating and Analysis. Unit 5. Module 15. Sept 24, 2003.

Schmitt R. B., (2005). New FBI Software May Be Unusable: A Central Feature of the

Agency's $581-Million Computer Overhaul Aimed at Coordinating Anti-Terrorism

Efforts is Reportedly Inadequate. LA Times. Jan. 13, 2005.

http://www.businessweek.com/globalbiz/blog/eyeonasia/archives/2010/01/google_brouhaha.html
http://www.businessweek.com/globalbiz/blog/eyeonasia/archives/2010/01/google_brouhaha.html
http://www.fortunecity.com/greenfield/grizzly/432/rra2.htm
http://www.jrothman.com/Papers/Costtofixdefect.html
http://www.sba.gov/idc/groups/public/documents/sba_program_office/sba_ocio_security_cmm_req.pdf
http://www.sba.gov/idc/groups/public/documents/sba_program_office/sba_ocio_security_cmm_req.pdf

www.manaraa.com

 129

SEI (1994). The Capability Maturity Model: Guidelines for Improving the Software

Process. Software Engineering Institute. Carnegie Mellon University. Addison-

Wesley. Reading, MA. 1994.

SEI (2009). Software Engineering Institute. Pittsburgh, PA Retrieved from

http://www.sei.cmu.edu/

Sethi, V., & King, W. R. (1998). Organizational transformation through business

process reengineering: Applying the lessons learned. Upper Saddle River, NJ:

Prentice-Hall Inc.

Shore, B. (2008). Systematic Biases and Culture in Project Failures. Project Management

Journal. Dec. 2008. p. 5-16.

Simmons, E. (2002). Implementation of the Agile Review/Extreme Inspection Method.

Retrieved from e-mail to Tom Gilb from Erik Simmons. Intel. January 9, 2002.

Sinks, S. (2007). Quantitative Research Design. University of Minnesota Duluth. Duluth,

MI. April 10, 2007

SML (2004). GQM Method Application. Software Measurement Laboratory SML@b,

FIN, IVS, AG Software Engineering, Otto-von-Guericke-University of Magdeburg,

Magdeburg, Germany. 2004.

Snow, A. P. and Keil, M. (2001). The Challenge of Accurate Software Project Status

Reporting: A Two Stage Model Incorporating Status Errors and Reporting Bias.

IEEE. September 2001. 0-7695-0981-9/01. 2001.

Software Testing/Quality Conference (1995). Software Testing/Quality. Computer

Conference Analysis Newsletter. June 6, 1995. Issue 365. p. 1-10.

http://www.sei.cmu.edu/

www.manaraa.com

130

Solomon, P. and Young, R. (2006). Performance-Based Earned Value. Wiley-IEEE

Computer Society Press. December 2006.

Solomon, P. (2006). Practical Performance-Based Earned Value. Systems and Software

Technology Conference, Track 5: 2:25 – 3:10 p.m. Room 251 D-F. 2 May 2006.

SPC (2004). Software Productivity Center. Software Productivity Center Inc. 2004.

Swartz, J. (2007). Chinese hackers seek U.S. access. USA Today – Technology. March 11, 2007.

Tingey, M. (1996). Comparing ISO 9000, Malcolm Baldrige, and the SEI CMM for

Software: A Reference and Selection Guide. Prentice Hall PTR (October 3, 1996).

TQE (2009). Malcolm Baldrige National Quality Award. Total Quality Engineering

Inc.15997 Grey Stone Rd, Poway, CA 92064. Retrieved from

http://www.tqe.com/baldrige.html.

TQM (2007). Total Quality Management. Wikipedia: The Free Encyclopedia. 2007.

Tripathy, P. (2007). Proposals: Effective Executive Summary. A Technical

Communication Community. June 15, 2007.

Tully, C. (2002). Halve Software Development Waste. Workshop on Grand Challenges

for Computing Research, UK Computing Research Committee. October 2002.

Twaites, G. and Sibilla, M. L. (2002). Software Engineering in an SEI Level-5

Organization. International Journal of Reliability, Quality and Safety Engineering.

Vol. 9, No. 4. 2002. p. 347-365. 2002.

Van Genuchten, M., Cornelissen, W., & Van Dijk, C. (1998). Supporting Inspection with

an Electronic Meeting System. Journal of Management Information Systems. Winter

97/98, Vol. 14 Issue 3. p. 165-178.

http://www.tqe.com/baldrige.html

www.manaraa.com

 131

Appendix A Tables

Table A1. Quantification of Quality Models Properties

Quantification of Quality Models Properties

Quality Model IT Relevance
1-Holistic
3-General
5-Specific

Level of Abstraction
1-Low
3-Moderate
5-High

Quality Usability
Index (QUI)

TCO 5.0 1.0 5.0
ITIL 4.2 1.7 7.1
CMM/CMMI 4.0 2.3 9.2
CobiT 3.5 2.7 9.5
Six Sigma 2.7 3.5 9.5
ISO 9000 2.2 3.9 8.6
Malcolm Baldrige 1.7 4.3 7.3
Scorecards 1.0 5.0 5.0

www.manaraa.com

 132

Table A-2. Quantification of Methodology Models Properties

Quantification of Methodology Models Properties

Methodology Model Ability to Execute
1-Low
3-Medium
5-High

Completeness of
Vision
1-Niche Player
3-Average
5-Visionaries

Methodology
Usability Index
(MUI)

SPC 1.7 1.7 2.9
DSDM 2.3 1.7 3.9
CMD 2.3 3.5 8.1
Rational RUP 4.5 2.8 12.6
Macroscope 4.2 4.5 18.9

www.manaraa.com

 133

Table A-3. Project Management Capability based on Model Analysis

Project Management Capability based on Model Analysis

Methodolo
gy Model

Software
Productivit
y Centre -

SPC

DSDM CMD Rational
RUP

Macro-
scope

 MUI 2.9 3.9 8.1 12.6 18.9

Quality
Model

QUI

Product Capability Index (PCI)

TCO 5.0 14 20 40 63 95
ITIL 7.1 21 28 57 90 135

CMM/
CMMI

9.2 27 36 74 116 174

CobiT 9.5 27 37 76 119 179
Six Sigma 9.5 27 37 76 119 179
ISO 9000 8.6 25 34 69 108 162
Malcolm
Baldrige

7.3 21 29 59 92 138

Score cards 5.0 14 20 40 63 95

www.manaraa.com

 134

Table A-4. Quality, Project Management and Communication Evaluation

Quality, Project Management and Communication Evaluation

0. Emphasis area not part of approach

1. Minimal mention of emphasis area

2. Emphasis Area included

3. Detailed applications of emphasis area

4. Major player in emphasis area

5. Industry Leader in emphasis area

Approach Quality Project
Management

Executive
Communication

Effectiveness
Penetration
Index (EPI)

Total Quality
Management (TQM)

5 3

1 3.0

Total cost of
Ownership (TCO)

5 2 2 3.0

Capability Maturity
Model (CMM)

3 3 1 2.3

Six Sigma 5 3 1 3.0
ISO 9001 4 2 1 2.3
Malcolm Baldrige
National Quality
Program

4 2 4 3.3

Fujitsu Macroscope 1 5 0 2.0
CMD Symphony 2 3 1 2.0
Dynamic System
Development
Method (DSDM)

2 3 1 2.0

Software
Productivity Center
(SPC)

3 3 1 2.3

www.manaraa.com

 135

Table A-4. (con’t)

Quality, Project Management and Communication Evaluation

Approach Quality Project
Management

Executive
Communication

Effectiveness
Penetration Index
(EPI)

Rational RUP 2 3 1 2.0
Progress Metric 2 4 2 2.7
Effort Metric 2 4 1 2.3
Cost Metric 1 4 3 2.7
Results Metric 2 4 2 2.7
Trouble Reports 3 3 1 2.3
Requirements
Stability

5 4 1 3.3

Size Stability 2 2 1 1.7
Computer Resource
Utilization (CRU)

1 2 1 1.3

Training 1 3 1 1.7
Software
Inspections

5 5 2 4.0

Earned Value
Management (EVM)

3 5 5 4.3

Defect Performance
Index (DPI)

5 5 3 4.3

Performance based-
Earned Value
Management

5 5 3 4.3

www.manaraa.com

 136

Table A-5. Earned Value Management Attributes

Earned Value Management Attributes

EVM Attribute Acronym Equation Description
Actual Cost
or
Actual Cost of
Work Performed

AC
or
ACWP

 The cumulative actual cost
spent to a given point in time
to accomplish an activity,
work package or project and to
earn the related value.

Budget at
Completion

BAC The total budget baseline for
the activity work package.

Earned Value
or
Budgeted Cost
of Work
Performed

EV
or
BCWP

 The cumulative earned value
spent to a given point in time.
It is the amount budgeted for
performing the work that was
accomplished.

Planned Value
or
Budgeted Cost
of Work
Scheduled

PV
or
BCWS

 The time phased budget
baseline.

Cost
Performance
Measurement

 Compares EV to AC

Schedule
Performance
Measurement

 Compares EV to PV

www.manaraa.com

 137

Table A-5. (con’t)

Earned Value Management Attributes

EVM Attribute Acronym Equation Description
Variances Generally based on

cumulative data and also
called inception-to-date
data and project to date
data

Cost Variance CV CV = EV – AC
CV = BCWP –
ACWP (Evensmo,
2004)

Budgetary conformance
of actual cost of work
performed

Schedule
Variance

SV SV = EV – PV
SV = BCWP – BCWS
(Evensmo, 2004)

This measures the
conformance of actual
progress to the schedule.
Brandon Jr. labels this
Schedule Variance
(monetary units)

Budget Variance BV BV = BCWS – ACWP
(Evensmo, 2004)

Spend rate/burn
rate

 Average AC per time
period.

Baseline
Schedule at
Completion

SAC

Planned
Accomplish-
ment rate

PV Rate PV Rate = BAC/SAC Average PV per time
period.

Time Variance

TV TV = SV/(PV Rate) Brandon Jr. labels this
Schedule Variance
(time units)

www.manaraa.com

 138

Table A-5. (con’t)

Earned Value Management Attributes

EVM Attribute Acronym Equation Description
Cost Variance
Percent

CVP CVP = CV/EV This is the measure of
the budgetary
conformance of actual
cost of work
performed. Brandon
Jr. has the equation
more technically
correct in that CV has
to be multiplied by 100
to get a number in
percent.

Schedule
Variance Percent

SVP SVP = SV/PV This is the measure of
the conformance of
actual progress to the
schedule.

Schedule
Variance Percent
based on Earned
Value

SVPev SVPev = SV/EV

Cost
Performance
Index

CPI CPI = EV/AC This is the measure of the
budgetary conformance of
actual cost of work
performed.

Schedule
Performance
Index

SPI SPI = EV/PV This is the measure of the
conformance of actual
progress to the schedule.

Critical Ratio CR CR = CPI x SPI This is also called the Cost-
Schedule Index: CSI

www.manaraa.com

 139

Table A-5. (con’t)

Earned Value Management Attributes

EVM Attribute Acronym Equation Description
Estimate to
Complete

ETC ETC = (BAC –
EV)/CPI

This is the estimated cost to
complete the remainder of
the project.

Variance at
Completion

VAC VAC = BAC – EAC Estimated cost overrun or
underrun at the completion
of the project.

Time Estimate to
Complete

TETC

Cost
Performance
Index (alt)

CPI CPI = %
Complete/% Spent

Estimate at
Completion (alt)

EAC EAC3 = AC/
(%Complete)

www.manaraa.com

 140

Table A-5. (con’t)

Earned Value Management Attributes

EVM Attribute Acronym Equation Description
Estimate at
Completion
Or
Cost Estimate at
Completion

EAC

CEAC

EAC1 = AC +
ETC
EAC2 = AC +
BAC

– EV = BAC –
CV

EAC3 = AC +
(BAC –

EV)/CPI
= BAC/CPI

EAC3v = AC +
(BAC –

EV)/CR
(Evensmo,

2004)
EAC4 = BAC
EAC5 = EACs =
BAC/CR

EAC2 used when past
performance is not deemed a
good indicator of future
performance.
EAC3 used when past
performance is deemed a
good indicator of future
performance. A variation on
EAC3 is to use CR instead of
CPI.
EAC4 is rarely achieved if
CPI is poor.
EAC5 used for an EAC
adjusted for schedule
performance.

Variance at
Completion

VAC VAC = BAC –
EAC

Estimated cost
overrun or underrun
at the completion of
the project.

Time Estimate to
Complete

TETC

www.manaraa.com

 141

Table A-5. (con’t)

Earned Value Management Attributes

EVM Attribute Acronym Equation Description
Time Estimate at
Complete

TEAC TEAC1 = AT + TETC
TEAC2 = SAC – TV
TEAC3 = SAC/SPI
TEAC4 = SAC
TEAC5 = TEACs =
SAC/CR

TEAC2 Used when past
performance is not
deemed a good indicator
of future performance.
TEAC3 is used when
past performance is
deemed a good indicator
of future performance.
TEAC4 is rarely
achieved if CPI is poor.
TEAC5 is TEAC
adjusted for cost
performance.

% Complete % Complete = EV/BAC
% Spent % Spent = AC/BAC
Cost
Performance
Index (alt)

CPI CPI = %
Complete/% Spent

Estimate at
Completion (alt)

EAC EAC3 = AC/(%
Complete)

Time Estimate at
Complete (alt)

TEAC TEAC3 = AT/%
Complete

Cost
Performance
Index (alt)

CPI CPI = Planned Unit
Cost /Actual Unit
Cost

www.manaraa.com

 142

Table A-6. Characteristics of C/SPIs (Chang, 2001)

Characteristics of C/SPIs (Chang, 2001)

 S1 S2 C1 C2 S3 S4 C3 C4
Index SPI(p) SPI (pf) CPI(p) CPI (pf) SPI(m) SPI(mf) CPI(m) CPI

(mf)
Level Project Project Project Project Mile-

stone
Mile-
stone

Mile-
stone

Mile-
Stone

Cost/
Schedul
e

Schedul
e

Schedul
e

Cost Cost Schedul
e

Schedul
e

Cost Cost

Period Month To
Comple
tion

Month To
Comple
tion

To-date To
Comple
tion

To-date To
Comple
tion

Current/
Forecast

Current Forecast Current Forecast Current Forecast Current Forecast

Judgme
nt

N/A N/A N/A N/A N/A Allowe
d

N/A Allowe
d

Table A-7. Reject DD for Project Inspected Deliverables

Reject DD for Project Inspected Deliverables

Deliverable Inspected DD Reject DD
Threshold

Within DD
Range or

(Outside DD
Range)

1. P100:
Opportunity
Evaluation

1.6 0.75 (0.8)

2. P120: Disposition 0.5 0.75 YES
3. P120: Relocation 0.4 0.75 YES
4. P120: Acquisition 1.1 0.75 (0.4)
5. P120: Cable and

Wire Network
and Design

1.3 0.75 (0.5)

6. P120: Ticketing
Infrastructure

1.2 0.75 (0.4)

7. P130: Objectives
of the System

4.0 0.75 (3.3)

www.manaraa.com

143

Table A-7. (con’t)

Reject DD for Project Inspected Deliverables

Deliverable Inspected DD Reject DD
Threshold

Within DD
Range or

(Outside DD
Range)

8. P140: Context of
the System

2.2 0.75 (1.4)

9. P150: Definition
of the Subject

2.2 0.75 (1.5)

10. P170/180/190
(FA1): Service
Request

0.2 0.75 YES

11. P170/180/190
(FA2): Approval

0.3 0.75 YES

12. P170/180/190
(FA3): System
Manager

0.9 0.75 (0.1)

13. P170/180/190
(FA4): Metrics
and History

0.2 0.75 YES

14. P170/180/190
(FA5): Catalog
and Reference
Data

1.2 0.75 (0.4)

15. P170/180/190
(FA6): Product
Requisition

0.9 0.75 (0.2)

16. P170/180/190
(FA9): Dispatch
Routing

1.7 0.75 (1.0)

www.manaraa.com

 144

Table A-8. Project Requirements Deliverables Defect Review Results

Project Requirements Deliverables Defect Review Results

P+ Deliverable Content
Pages

Reviewer A Reviewer B Reviewer C Total
Defects

Defects/
Page

 Defects Minutes Defects Minutes Defects Minutes
1. P100: 32 25 30 0 45 DNR DNR 50 1.6
2. P120: Disp 39 10 30 DNR DNR DNR DNR 20 0.5
3. P120: Relo 53 10 30 DNR DNR DNR DNR 20 0.4
4. P120: Acq 18 10 30 0 30 DNR DNR 20 1.1
5. P120: Cable 16 10 30 DNR DNR DNR DNR 20 1.3
6. P120: Ticket 17 10 30 0 25 DNR DNR 20 1.2
7. P130: 4 8 15 DNR DNR DNR DNR 20 4.0
8. P140: 11 12 20 DNR DNR DNR DNR 24 2.2
9. P150: 9 10 40 DNR DNR DNR DNR 20 2.2
10. P170...(FA1) 38 3 60 DNR DNR DNR DNR 6 0.2
11. P170…(FA2) 6 1 15 DNR DNR DNR DNR 30 0.3
12. P170…(FA3) 14 6 15 DNR DNR DNR DNR 12 0.9
13. P170…(FA4) 47 4 30 DNR DNR DNR DNR 8 0.2
14. P170…(FA5) 47 28 30 DNR DNR DNR DNR 56 1.2
15. P170…(FA6) 26 12 20 DNR DNR DNR DNR 24 1.7
16. P170…(FA9) 7 6 15 DNR DNR DNR DNR 12 1.7

Total 384 165 440 0 100 0 0 330 0.9
Notes: DNR = Did not review; Total Defects = Two times the max Defects detected by a single reviewer

www.manaraa.com

145

Table A-9.Key Words by Literature Type

Key Words by Literature Type

Key Words Journal Professional

Publication
Professional
Technical
Book

Gov't
Technical
Publication

Article Technical
Conference

Industry
Publication

Totals

Metrics 1 2 1 1 5 10
Earned Value 3 3 1 2 1 1 11
Software Quality 2 2 1 1 1 3 10
Software Metrics 2 3 3 2 1 11
Software Project
Failure

2 1 2 2 2 9

Software Project
Measurement

2 1 1 1 1 3 9

Software process
quality

4 1 3 4 1 2 4 19

Software Project
Success

3 1 6 3 1 3 17

Quality 1 2 1 3 2 9
Software
Inspections

4 1 1 1 2 9

Other 1 3 4 1 0 9
Totals 24 18 22 19 5 9 26 123

www.manaraa.com

 146

Appendix B Figures

• virtuosos & talented amateurs
• extravagant use of materials
• design by intuition & brute

force

• skilled craftsmen
• established procedure
• training in mechanics
• concern for cost
• manufacture for sale

• educated professionals
• analysis & theory
• progress relies on science
• analysis enables new

applications
• market segmented by product

variety

Commercialization

Science

Professional Engineering

Craft

Production

• knowledge transmitted slowly,
casually

• manufacture for use rather than
sale

Figure B-1. Engineering evolution paradigm.

www.manaraa.com

147

Figure B-2. Macroscope 4.5 requirements deliverables

www.manaraa.com

 148

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0
Fe

b

A
pr Ju
n

A
ug O
ct

D
ec

Fe
b

A
pr Ju
n

A
ug

Management Reserve
CBB

PMB

BCWS

EAC or LRE

VAC

 BAC

 Schedule Delay

Figure B-3. EVM graphical analysis

ACWP

BCWP

Schedule
Variance

Cost Variance

www.manaraa.com

 149

Figure B-4. Process flow from agile inspections for defects to determining project impact

www.manaraa.com

 150

1-Total Reviewer Defects
Detected (TRD) 330 2-Total Content Pages

(TCP) 384

3-Total Requirements
Defects (TDD) = 3*TRD 990 4-Expected

Defects/Content Page (ED) 0.25

5-Defects Detected/Content
Page (DD) = TRD/TCP 0.86

11-Effort Leverage for
Defect Correct in Design
(DEL) = DL*HFR

10

6-Unanticipated Major
Defects Detected/Content
Page (UDD) = DD – ED

0.61
24-Effort Leverage for
Defect Correct in Test
(TEL) = TL*HFR

100

7-Unanticipated Major
Defects (UD) =
(UDD/DD)*TDD

702 15-Personnel Productivity
(PP) in (hours/day) 6.5

8-Defects found prior to
test (DFPT) = PFDBT*UD 351 14-Number of people on

project (P) 29

13-Effort to fix in Design
(DE) = DEL*DFPT 3510 19-Manufacturing Days

per month (MD) 21

17-Additional Days (ADE)
to fix defects found prior to
test = DE/RH

18.6 12-% Defects found and
fixed before test (PFDBT) 50%

Figure B-5. IV and DV values for project under study

www.manaraa.com

151

18-Additional Months
(AME) Schedule Impact
prior to test = ADE/MDO

0.9
16-Resource Hours used
per day
RH = PP*P

188.5 32-QPI = ED/DD 0.29

22-Defects found in test
(DT) = PDFIT*(UD-
DFPT)

116 21-% of Defects found in
Test (PDFIT) 33%

25-Effort to fix in test
(TE) = TEL*DT 11583.0 20-% Overtime (OT) 4%

9-Leverage of
Requirements Defect found
in Design (DL)

10

26-Additional Days
(ADT) to fix defects found
in Test=TE/RH

61.4 21-Days worked each
month (MDO) = MD*OT 21.84

23-Leverage of
Requirements Defect found
in Test (TL)

100

27-Additional Months
(AMT) Schedule Impact =
ADT/MDO

2.8
10-Hours to Fix a Defect in
the Requirements Phase
(HFR)

1 26-Rap Rate (RAP) $110

31-Total Months Impact
(TAM) = AME + AMT 3.7 30-Total Effort (TLE) =

DE + TE 15093 29-Total Cost (TOC)
 = DC +TC $1,660,230

27-Design Cost (DC) =
DE*RAP $386,100 28-Test Cost (TC) =

TE*RAP $1,274,130

Figure B-6 IV and DV values for project under study (con’t)

www.manaraa.com

 152

Appendix C – Additional Variables and Equations

RD = Total Defects found by the reviewers. The rule of thumb for estimation is that the

total unique defects found is twice the number that is that maximum of the largest

number of defects found by each reviewer. Equation C-1 is RD = (Max D)*2.

TCP = Total number of content pages reviewed. This is a cumulative number of pages

reviewed by the reviewers as more documents are reviewed. Equation C-2: TCP

= j = 1

j = n

j
j = 1

j = n

CPj∑
j = 1

j = n

j
j = 1

j = n

CPj
j = 1

j = n

j
j = 1

j = n

CPj∑

TD = Total Defects in the document. The rule of thumb for estimation is that the total

number of defects in the document is three times the number detected. Equation

C-3 is TD = 3*RD.

TDD = Summation of Total Defects found in each document. This is a cumulative

number of defects detected by the reviewers as more documents are reviewed.

Equation C-4: TDD = where n = the number of documents reviewed.

TRD = Summation of Total Defects found in each document. This is a cumulative

number of defects detected by the reviewers as more documents are reviewed.

Equation C-5 is TRD = where n = the number of documents reviewed. j = 1

j = n

∑RDj
j = 1

j = n

∑RDj

DD = Detected Defects per Content Page. This is the total number of defects detected

divided by the total number of content pages. Equation C-6 is DD = TDD/TCP.

UDD = Unanticipated Defects per Content Page. The inspected defects per content page

minus the expected defects per content page. Equation C-7 is UDD = DD-ED.

www.manaraa.com

153

QPI = Quality Performance Index. QPI is the ratio of the expected quality to the detected

quality. Equation C-8 is QPI = ED/DD.

UDD = Unanticipated Defects per Content Page. This is the number of defects per

content page that were not expected in the planning of the project. Equation C-9

is UDD = DD – ED.

www.manaraa.com

154

Appendix D – Quality Review Checklist – Requirements (Example)

Reviewer’s Name: A
Document Name: P150
Content Pages: 9
Document Type: Requirements
Project Phase: PA
Major Defects Requirements Checklist - there is a major defect if the
requirement:

a. Is Ambiguous to the intended Readership
b. Is Not Clear enough to test.
c. Has Design specs (= ‘how to- be good’) mixed in

a. Mixed up in the Requirements
b. (Req’ts. = ‘how good - to be’) not how to be good!
c. MARK Design as “D”: Except if it is a conscious Design

Constraint - which is a requirement type
4. Does not conform to the organization’s requirement’s template (if

any)
Major Defect Definition:

A defect severity where there is potential for:
a. High loss (>10 lost engineering hours)
b. Later downstream impact (test, field).

Results:
Time Spent in Review: 0:40 min Pages Reviewed: 9
Total Defects: 10 Major Defects: 9 Design Defects: 1

www.manaraa.com

155

Appendix E Major Quality Models

Total Quality Management (TQM). In the mid-80s, the US Department of

Defense initiated the extensive use of the term Total Quality Management (TQM). TQM

has never been clearly defined in spite of the many books and articles written about each.

Each one seems to be slightly different. However, the following are common elements

associated with a basic TQM process (Harrington & Harrington, 1995): Top management

involvement; flow down to all levels of management; gain understanding of the

customer’s requirements; prevent errors from occurring; implement statistical disciplines

for root cause analysis and process management; teach employees to team; train

employees in problem solving; focus on improving the process for better quality, not the

people as the cause of poor quality; develop fewer but better suppliers; establish quality

and customer-related metrics; focus on all stakeholders, internal and external, and solve

problems and make decisions, at all levels of the enterprise, with teams.

A survey by MAPI (Manufacturers’ Alliance for Productivity and Innovation)

reported the following results from those organizations surveyed who had implemented

TQM, to one degree or another (Harrington and Harrington, 1995): 40% of the

companies surveyed reported a significant improvement; 45% of the companies surveyed

reported some improvement; 15% of the companies surveyed reported marginal

improvement, and 0% of the companies surveyed reported no improvement.

A survey by the American Society for Quality Control reported that 31% of those

organizations surveyed had made some mistakes. The following areas frequently were

cited (Harrington and Harrington, 1995): not beginning sooner; failing to make it a

www.manaraa.com

156

priority; making it a project rather than a continuing process; expecting immediate

financial payback; not involving everyone, and not emphasizing metrics enough.

Total Cost of Ownership (TCO). TCO has been used in many different

businesses and organizations. The US government, in particular, has been stressing the

use of the concept and could definitely be considered a sponsor of TCO. It is also known

as Total Ownership Cost and consists of the total cost to operate an enterprise or deliver a

product. This includes hardware, software, personnel and all other resources necessary to

accomplish the organization’s mission (NAS, 1998). TCO looks at all aspects of any

product or service. Unlike other Quality approaches that may view Quality from a single

aspect. TCO tries to integrate all the data from all the aspects of delivering a quality

product or service.

Capability Maturity Model (CMM). Capability Maturity Model was created by

the Software Engineering Institute which is part of Carnegie Mellon University,

Pittsburgh, PA. SEI- Capability Maturity Model is a collection of best practices for

software development and maintenance. The theoretical foundation for Capability

Maturity Model and all Capability Maturity Model derivatives is the concept of

establishing professional engineering practices in software development in the same way

that they exist in other engineering professions. The chronological/functional flow of a

technical profession from craftsman to engineering (Lutenist, 2006) is shown in Figure B-1

(see Appendix B).

Capability Maturity Model allows companies to assess their practices and

compare them to those of other companies. SEI- Capability Maturity Model’s focus is on

process maturity. There are five levels of maturity that have auditable criteria for

www.manaraa.com

157

completion: Initial, Repeatable, Defined, Managed, and Optimizing (SEI, 1994).

Capability Maturity Model is a very detailed model. It was developed specifically to

address the challenges of software development organizations. As an organization moves

up the maturity scale the focus shifts to continuous improvement. The model itself can

be used as a template for performing an internal organizational self-assessment.

Capability Maturity Model Integration (CMMI). Capability Maturity Model

Integration is an update of SEI-CMM by the Software Engineering Institute. It combines

the Software Capability Maturity Model (SW-CMM), the Systems Engineering

Capability Maturity Model (EIA-731) and the Integrated Product Development

Capability Maturity Model into an integrated CMM renamed Capability Maturity Model

Integration. People Capability Maturity Model (PCMM) has not been incorporated into

Capability Maturity Model Integration although People Capability Maturity Model

Version 2.0 takes into account the more advanced aspects of the higher levels of

Capability Maturity Model Integration maturity (PCMM, 2008). Capability Maturity

Model Integration is a very detailed and is designed specifically for large software

development organizations. It places even more emphasis on continuous improvement,

not on just being certified to a certain level. Capability Maturity Model Integration

doesn't address the basic IT operations issues, such as security, change management,

configuration management, capacity planning, troubleshooting, and help desk functions.

Capability Maturity Model Integration sets goals but does not specify how to

accomplish these goals. A glaring example is in the area of requirements. Capability

Maturity Model Integration identifies the need to perform the function of requirements

analysis. Capability Maturity Model Integration does not specify or give guidance in

www.manaraa.com

158

how to successfully accomplish that task. Such an approach allows the principles to

remain common while the implementation details may vary. Such flexibility is desirable

recognizing that while processes may be common, implementation of process using

specific procedures can vary based on methodology and/or technology.

Control Objectives for Information and Related Technology (CobiT). CobiT

is the product of the Information Systems Audit and Control Association and the IT

Governance Institute. CobiT is a set of guidelines for IT processes, practices and controls

that is mainly intended to be used for purposes of audit. CobiT stresses integrity,

reliability and security with the goal reducing risk (CobiT, 2009). The following four

major domains are addressed: Planning and Organization; Acquisition and

Implementation; Delivery and support, and Monitoring. Like CMM, CobiT has maturity

levels, but it has six to CMM's five. CobiT functions well as a checklist for IT. CobiT’s

approach allows IT organizations to deal with risks not explicitly addressed by other

quality models. CobiT also assists IT organizations in passing audits. CobiT has a

capability to interact well with other quality models, and is specifically structured to

interact with the ITIL model. CobiT has IT General Controls and Application [software]

Controls in it processes that run in parallel to each other. As the maturity level increases,

measurement plays a larger part in the IT process management decisions. Score cards

first appear at level 3. Efficiency and effectiveness are used by a level 4 organization

(ISACA, 2009).

Information Technology Infrastructure Library (ITIL). After the Falkland

Islands war with Argentina, the United Kingdom Office of Government Commerce

commissioned a study on how to develop a common approach to IT. It had become

www.manaraa.com

159

apparent that during the war organizations were using the same terms and meaning

entirely different things. Out of this effort was born ITIL. Now, Pink Elephant and other

suppliers are conducting classes and holding certification training in ITIL in the USA.

ITIL has developed a set of IT processes and best practices for IT service management

and operations (such as service-desk, incident, change, capacity, service-level and

security management). ITIL is now a well established, mature, and detailed quality

model. It focuses on IT production and operational quality issues.

ITIL has a perspective of service delivered and IT software applications are part

of a service delivery. As part of any service delivery an Evaluation Plan is generated.

The Evaluation Plan contains provisions for consistently measuring performance of a

service change and providing metrics associated with that change.

Six Sigma. Six Sigma was originally developed by Motorola Inc. and has lately

been successfully implemented on a corporate scale by General Electric. Six Sigma

identifies statistical methods for quality and process improvement. It can focus on

quality from a customer’s point of view or a user’s point of view. Motorola chose to

focus on the manufacturing aspects of quality and attempted to drive product quality to a

six sigma defect error rate for manufacturing operations. GE chose to focus on six sigma

defect error rate from the customer’s point of view. Initially, Motorola had some

difficulty integrating the discipline of six sigma with the need to respond quickly to

innovation. They have since over come that and have successfully integrated the two

business approaches (Crockett and McGregor, 2006). Among other things, Six Sigma

can be used to define service levels and measures variances from those levels. Projects

typically go through five phases: define, measure, analyze, improve, and control. This is

www.manaraa.com

160

almost identical to Deming’s ubiquitous Plan, Do, Check, Act (PDCA) cycle. The six

sigma approach focuses on how to develop and apply methods and principles for the

creation of defect-free products or services, rather than trying to improve existing ones.

Six Sigma’s diagnostic phases are designed to identify root causes of problems

and undesirable situations. Once a root cause of a process problem is identified, then a

plan can be developed to update the process to eliminate the problem, or at least mitigate

the effects of the problem. With the case of software development projects,

understanding the root cause of process failures in the development lifecycle is a key to

successful project management of the ongoing projects.

ISO 9001. ISO is an acronym for International Standards Organization, which is

European based. Compliance to the ISO set of standards has become an economic

requirement for trade with the European Union. It is a well established and mature

quality model. ISO is a set of standards for quality management systems. ISO 9001 is

the software standard. They are customer-oriented and an organization can be audited

against them for compliance. These standards tend to focus on control, repeatability and

good documentation of processes as opposed to products. Traditional software

development process emphasizes testing techniques, but show weakness in planning.

However, it does not satisfy the requirement of the user to cause failure cost heavily. ISO

9001 Quality Management System, Capability Maturity Model (CMM) and Total Quality

Management (TQM) are all quality management technologies. These technologies can

be applied to the software quality industry (Lee and Chang, 2006).

Malcolm Baldrige National Quality Program. The Malcolm Baldrige award is

a U.S. government program and is sponsored by the National Institute of Standards and

www.manaraa.com

161

Technology, U.S. Department of Commerce. Enhancing the competitiveness, quality, and

productivity of US organizations for the benefit of all residents is the goal of the award

(Baldrige, 2004). The Malcolm Baldrige award has a quality measurement in seven

areas: Leadership, Strategic Planning, Customer Focus, Measurement Analysis and

Knowledge Management, Workforce Focus, Process Management and results (TQE,

2009). Each area is rated on approach, execution and results. There is a minimum score

of zero and a maximum of 100 in each area. The award addresses all aspects of a

business or organization. The approach is general enough that it can be applied at a top

company or organization level as well as be used at a supervisor’s level. Its criteria are

not specifically addressing software or IT, but the categories can be used by organizations

in those disciplines.

The Malcolm Baldrige Award process methodology is often compared against the

ISO 9001 and Capability Maturity Model Integration/Capability Maturity Model

Integration methodologies for achieving high levels of software quality (Tingey, 1996).

The Malcolm Baldrige process has a Measurement Analysis area of quality but does not

get as specific as some other methodologies. It has generally been acknowledged as a

more holistic methodology than others that are more specific (Crymble, 2001).

www.manaraa.com

162

Appendix F – Software Development Process Models/Methodologies

Fujitsu Macroscope. Macroscope was developed by DMR, a Canadian

consulting firm. The first methodology product was an application development

methodology that had a waterfall Software Development Life Cycle (SDLC); it was

called P+. The product was expanded to include other areas of software development

such as Architecture (A+). Macroscope is a development methodology that bases its

quality and schedule on deliverables at each phase of development (Fujitsu, 2002).

Macroscope is extremely detailed and requires that all activities be defined by

deliverables as evidence of successful completion. It has expanded from an initial

concentration on software development (ProductivityCentre) to also include Architecture

(ArchitectureLab), Project Management (ManagementSuite), Strategic Business

(StrategyForum) and Value Management (ResultStation).

CMD Symphony. CMD Symphony, not surprisingly, is a product of the CMD

Corporation. It is a complete set of development methodology paths, and each path is

also a full life cycle methodology. CMD provides a complete project environment

including clearly defined roles and responsibilities, deliverable descriptions, templates

and examples, concise task descriptions, and Meta model definitions and effects. Each

methodology describes the systems development life cycle as a series of phases such as

Strategic Visioning, Analysis and Architecture, Design, Construction, Transition and

Production. CMD’s terminology includes a Phase which involves a formal review and

confirmation and is composed of a series of sub-phases which involve one or more tasks.

The tasks are where responsibilities are assigned; specific deliverables are identified, and

www.manaraa.com

163

detailed schedules are maintained. Each task is described in terms of its objectives, input,

deliverables, dependencies, roles and responsibilities, Meta model effects, and other

references. Tasks can have Subtasks which are specific procedures that describe the

necessary detailed activities required to meet the objectives of the task. There is additional

documentation such as Management Guidelines, Client/Server Concepts and Principles,

Synergy/Framework Techniques, Product Reference and Vendor Identification,

Evaluation and Selection, as well as a Sample Deliverables Framework.

Dynamic System Development Method (DSDM). The DSDM Consortium has

developed its own methodology. DSDM uses an iterative process based on prototyping

and involves the users throughout the project life cycle (DSDM, 2004). The most recent

Version is 4.2. There are some purported benefits in the DSDM approach and they

include the following (DSDM, 2004): the users are more likely to claim ownership of the

solution; the risk of building the wrong system is greatly reduced; the final system is

more likely to meet the users' real business requirements; the users will be better trained

as their representatives will define and coordinate the training required, and the

implementation is more likely to go smoothly because of the cooperation of all parties

concerned throughout the development.

Software Productivity Center (SPC). As with the previous methodology, here

too the product name is the company name. Software Productivity Center, Inc. (SPC) is

the creator of Software Productivity Center. SPC consists of the major elements of

Process Improvement, Software Requirements, Project Management and Planning,

Configuration Management, Quality Assurance, Testing and Managed Outsourcing.

www.manaraa.com

164

These elements are incorporated into the tools produced by Segue and Merant as well as

the Estimate Professional tool.

Rational RUP. Rational RUP (Rational Unified Process) is a product of Rational,

which is now owned by IBM. According to IBM, Rational RUP was never intended as a

one-size-fits-all process (IBM, 2003). RUP consists of the major capabilities of business

modeling, requirements, analysis and design, implementation, test, configuration and

change management, deployment, project management and environment (Rational,

2001). It identifies phases and attempts to integrate shills and disciplines over the life

cycle of the project. The various capabilities are linked together functionally so that they

resemble the Deming Plan/Do/Check/Act (PDCA) cycle.

www.manaraa.com

165

Appendix G Metrics

Macroscope Metrics. Macroscope version 4.5 defines metrics in terms of the

success of achieving the application quality requirements. In Macroscope, Quality

Criteria consists of a set of defined and documented rules and conditions which are used

to decide whether the total quality of a specific product is acceptable or not (Macroscope,

2004). Macroscope focuses on Information Technology applications which have

characteristics of the quality requirements below. Quality requirements are defined in

terms of certain quality characteristics. The characteristics that have been adapted from

ISO9126 are efficiency, functionality, maintainability, portability, reliability, security and

usability (Macroscope, 2004). Quality metrics are the quantitative measurement of the

characteristics of each quality requirement. Included in these metrics are rating levels

that define how acceptable the measured values are.

Information Technology Infrastructure Library (ITIL) Metrics. ITIL is

focused on Information Technology processes to develop and maintain the IT

infrastructures of businesses and governmental organizations. ITIL focuses on service

and responsiveness of the IT organization to their customers and business partners. ITIL

therefore recommends that service quality metrics should be introduced from the very

beginning (Mendel et al, 2004). This should be coupled with a strong focus on

automating recurring tasks.

Progress Metrics. Progress indicators provide information on how well the

project is performing with respect to planned task completions and keeping schedule

commitments (USC, 2001, p31). Tasks are scheduled and then progress is tracked to the

www.manaraa.com

166

schedules. Metrics are collected for the activities and milestones identified in the project

schedules. Metrics on actual completions are compared to those of planned completions

to determine whether there are deviations to the plan. The difference between the actual

and planned completions indicates the deviations from the plan. Each project identifies

tasks for which progress metrics will be collected. The completion criteria for each task

must be well defined and measurable. The project should establish range limits

(thresholds) on the planned task progress for the project. The thresholds are used for

management of software development risk. The metric is depicted by the cumulative

number of planned and actual completions (or milestones) over time. Each project is

expected to produce multiple progress charts for different types of tasks, different teams,

etc.

Effort Metrics. Effort indicators allow the software manager to track personnel

resources (USC, 2001, p32). They provide visibility into the contribution of staffing to

project costs, schedule adherence, product quality and the amount of effort required for

each activity. Effort indicators include trends in actual staffing levels, staffing profile by

activity or labor category, or a profile of unplanned staff loses. Effort indicators may be

used by all levels of project software management to measure the actual profile against

the plan. Each level of management forms a profile for its area of control and monitors

the actual profile against the plan.

Determining the number of staff needed at any one time is an important function

performed by software management. By summing the number of staff during each

reporting period, the composite staffing profile for the project can be determined. These

indicators are applied during all life-cycles phases, from project inception to project end.

www.manaraa.com

167

Effort metrics are to be collected and reported at least on a monthly basis. The effort and

cost metrics are related. By convention, effort metrics are non-cumulative expenditures

of human resources, and cost metrics are cumulative levels of effort as tracked by earned

value. Thus, cost metrics are a cumulative depiction of effort. This metric is depicted by

a plot of monthly actual versus planned effort.

Cost Metrics. Cost management is an important activity for the success of a

project, and labor is the primary component of software development cost (USC, 2001, p.

33). Managers must define the work in their area, determine the skill level required to

perform the work, and use productivity estimates and schedule constraints to determine

budgeted costs over time. Use staff-hours to measure cost, rather than dollars. The

dollars per staff-hour varies over time and by labor category, and the conversion is made

only by Finance. Cost is related to the effort indicator, with cost defined as an

accumulation of effort expenditures. (The total project cost also includes non-labor costs,

but they are not tracked here.) Only those projects using earned value can report the

earned value quantities.

A Work Breakdown Structure (WBS) is established to define the structures that

will be used to collect the costs. The WBS identifies separate elements for requirements,

design, documentation, code and unit test, integration, verification, and system testing.

Costs can also be segregated by component, function, or configuration item. Work

packages are derived from the WBS. Costs are allocated to work packages using an

earned value method. This system allows managers to track the actual costs and measure

them against the budget for their respective areas of responsibility. This metric is

www.manaraa.com

168

depicted with actual and budgeted quantities are derived from an earned value system,

and are shown in terms of staff-hours.

Results Metrics. Review Results indicators provide insight into the status of

action items from life-cycle reviews (USC, 2001, p34). The term Action Item (AI) refers

to inspection defects and customer comments. Reviews include the following: formal

inspections of software documents or code; formal customer milestones, e.g., SSR, PDR,

CDR, or TRR; informal peer evaluations of products, e.g., walkthroughs, technical

reviews, or internal PDRs; management reviews, and process reviews, e.g., SQA audits,

SEI CMM assessments, or the causal analysis from formal inspections.

There are standards for some reviews, as well as procedures for conducting them.

For example, formal inspections result in assertion logs that document the minor and

major defects uncovered by the inspection process. Therefore, standard review result

indicators for formal inspections are: counts of minor/major defects; rates of defect

detection (e.g., assertions per inspection meeting minute, defects per inspected document

page, or defects per KSLOC of code inspected), and defect status (e.g., age of open

defects, number of open/closed defects, and breakdown by defect categories). A

customer-conducted review such as a Preliminary Design Review (PDR) generates AIs

that must be closed before approval of the Software Design Document. Therefore,

standard review result indicators for a PDR are the number of comments written and their

status (open, closed, and age). Review metrics record the AIs identified in the review

findings and track them until they are resolved. These metrics provide status on both

products and processes. Review results are not to be used to evaluate the performance of

individuals. Review Results are collected and reported at least monthly at every stage of

www.manaraa.com

169

the software life cycle, but preferably weekly for key AIs. This metric is depicted by the

cumulative counts of AIs written and closed by reporting period.

Trouble Reports (TR) Metrics. TR indicators provide managers with insight

into the quality of the product, software reliability, and the effectiveness of testing (USC,

2001, p35). They also provide information on the software development process. The

terms defect and problem are used interchangeably herein. Monthly tracking of TR

indicators shows the project's trends in the following areas: the rate at which TRs are

being written and resolved; the type and severity of the TRs; relationship between the

number of TRs and the number of test cases passed or the number of test steps passed;

the TR density (the number of TRs per unit size); the number of defects in each software

application/unit.

TR indicators are applicable only in the following life cycle stages (and each

release of the software within these stages, and during the informal and formal test

segments of these stages) (1) application test and integration, (2) system test, (3)

acceptance test. Thus the TR indicators are applicable only to defects during the

operation or execution of a computer program. Due to the shortness of testing periods,

and the dynamics involved between the test team and the implementation team that

analyzes the TRs and fixes the defects, the TR indicators are generally evaluated on a

weekly basis. The terms open and closed are defined as follows: Open - the problem has

been reported, and Closed - The investigation is complete and the action required to

resolve the problem has been proposed, implemented, and verified to the satisfaction of

all concerned. In some cases, a TR will be found to be invalid as part of the investigative

www.manaraa.com

170

process and closed immediately. This metric is depicted by a cumulative count of total,

open, and closed TRs over time (weekly periods).

Requirements Stability Metrics. Requirements Stability provides an indication

of the completeness, stability, and understanding of the requirements (USC, 2001, p36).

It indicates the number of changes to the requirements and the amount of information

needed to complete the requirements definition. A lack of requirements stability can lead

to poor product quality, increased cost, and schedule slippage. Requirements stability

indicators are in the form of trend charts that show the total number of requirements,

cumulative changes to the requirements, and the number of TBDs over time. A TBD

refers to an undefined requirement. Based on requirements stability trends, corrective

action may be necessary.

Requirements stability is applicable during all life-cycles phases, from project

inception to the end. The requirements stability indicators are most important during

requirements and design phases. Requirements stability metrics are collected and

reported on a monthly basis. This metric is depicted by the total number of requirements,

the cumulative number of requirements changes, and the number of remaining TBDs

over time. It may be desirable to also show the number of added, modified and deleted

requirements over time.

Size Stability Metric. Software size is a critical input to project planning. The

size estimate and other factors are used to derive effort and schedule before and during a

project (USC, 2001, p. 37). The software manager tracks the actual versus planned

software product size. Various indicators show trends in the estimated code size, trends

by code type, the variation of actual software size from estimates, or the size variation by

www.manaraa.com

171

release. Size stability is derived from changes in the size estimate as time goes on. It

provides an indication of the completeness and stability of the requirements, the

understanding of the requirements, design thoroughness and stability, and the capability

of the software development staff to meet the current budget and schedule. Size

instability may indicate the need for corrective action. Size metrics are applicable during

all life-cycle phases. Size metrics are collected and reported on a monthly basis, or more

often as necessary. This metric is depicted by plotting planned and currently estimated

software size per release over time. Besides showing re-allocation of software content

between releases, this also shows the growth in the total estimated size.

Computer Resource Utilization. Computer Resource Utilization indicators

show whether the software is using the planned amount of system resources (USC, 2001,

p. 38). The computer resources are normally CPU time, I/O, and memory. For some

software, the constraints of computer resources significantly affect the design,

implementation, and testing of the product. They can also be used to replan, re-estimate,

and guide resource acquisition. Computer resource utilization is planned during the

requirements activity and reviewed during the design activity. Resources are monitored

from the start of implementation activity to the end of the life cycle.

For memory utilization, the unit of data is the byte, word, or half-word. For CPU

time, the unit of data is either MIPS (millions of instructions per second), or the

percentage of CPU time used during a peak period. For I/O time, the unit of data is the

percentage of I/O time used during a peak period. Resource Utilization data is collected

and reported at least monthly, with the period between collection and reporting becoming

shorter as the software system nears completion and a better picture of software

www.manaraa.com

172

performance can be seen. Note that the resource utilization is normally an estimate until

integration occurs, at which time the actual data is available. This metric depicts the

CPU and memory use as a percent of available and the maximum allowed.

Training Metrics. Training indicators provide managers with information on the

training program and whether the staff has necessary skills (USC, 2001, p. 39). A trained

staff is a commitment. The manager must ensure that the staff has the skills needed to

perform their assigned tasks. The objective of the training indicator is to provide

visibility into the training process, to ensure effective utilization of training, and to

provide project software managers with an indication of their staff's skill mixture. The

manager should investigate the deviations in the number of classes taught from the

number of classes planned, and the deviation of the number of staff taught to the planned

number. The quality of the training program should also be determined from completed

course evaluation sheets. The number of waivers requested and approved for training

should also be tracked. This metric depicts a graph of the total monthly attendance of

personnel attending training classes. It represents the sum of the number of personnel

attending all classes.

www.manaraa.com

173

Appendix H – Notification of Approval to Conduct Research – Lawrence Day

Subject : Notification of Approval to Conduct Research-Lawrence Day

Date : Mon, Apr 12, 2010 10:11 AM CDT
From : IRB@waldenu.edu

To : ldayx001@waldenu.edu

CC : research@waldenu.edu, Raghu.Korrapati@waldenu.edu

Dear Mr. Day,

This email is to serve as your notification that Walden University has approved BOTH
your dissertation proposal and your application to the Institutional Review Board. As
such, you are approved by Walden University to conduct research.

Please contact the Office of Student Research Support at research@waldenu.edu if you
have any questions.

Congratulations!

Jenny Sherer
Operations Manager, Office of Research Integrity and Compliance

Leilani Endicott
IRB Chair, Walden University

http://my.campuscruiser.com/em2PageServlet?cx=u&pg=papp&tg=Email-readmail&main=1&qi=I3FpCiNUaHUgT2N0IDA3IDE4OjA2OjIwIEVEVCAyMDEwCmZvbGRlcklkPTEwMDAwMjM4OTcKX3NvcnRCeT1yZWNlaXZlZERhdGUKX3NvcnRPcmRlcj0xCm1vZGU9bG9hZApzdGFydD0yMQo=&seq=25&msgId=1063961381##
javascript:quickAddSwitch('ldayx001%40waldenu.edu');
mailto:research@waldenu.edu

www.manaraa.com

174

Appendix I – Major Defects Requirements Checklist

Major Defects Requirements Checklist - there is a major defect if the requirement:

d. Is Ambiguous to the intended Readership

e. Is Not Clear enough to test.

f. Has Design specs (= ‘how to- be good’) mixed in

d. Mixed up in the Requirements

e. (Req’ts. = ‘how good - to be’) not how to be good!

f. MARK Design as “D”: Except if it is a conscious Design Constraint -

which is a requirement type

5. Does not conform to the organization’s requirement’s template (if any)

Major Defect Definition: A defect severity where there is potential for:

c. High loss (>10 lost engineering hours)

d. Later downstream impact (test, field).

www.manaraa.com

175

Appendix J – Boeing Co. Data Use Agreement

DATA USE AGREEMENT
This Data Use Agreement ("Agreement"), effective as of4127109, is entered into
by and between Lawrence Day ("Data Recipient") and The Boeing Company ("Data
Provider"). The purpose of this Agreement is to provide Data Recipient with access to a
Limited Data Set ("LDS") for use in connection with the study entitled "A Systems
Approach to the Integration of Software Quality into Software Project Management"
("Study").
1. Responsibilities of Data Recipient. Data Recipient agrees to:
a. Use or disclose the LDS only as permitted by this Agreement or as
required by law;
b. Use appropriate safeguards to prevent use or disclosure of the LDS other
than as permitted by this Agreement or required by law;
c. Report to Data Provider any use or disclosure of the LOS of which it
becomes aware that is not permitted by this Agreement or required by law;
d. Upon prior written approval of Data Provider, require any of its
subcontractors or agents that receive or have access to the LOS to agree to
the same restrictions and conditions on the use and/or disclosure of the
LOS that apply to Data Recipient under this Agreement;
e. Not use the information in the LOS to identify or contact any individuals
who are data subjects; and
f. The Data Recipient shall comply with all Data Provider policies including,
without limitation, all procedures that address the external release of
proprietary information such as PRO-3439.
2. Permitted Uses and Disclosures of the LOS. Data Recipient may use and/or disclose
the LOS for its research activities only.
3. Term and Termination.
a. Term. The term of this Agreement shall commence as of the Effective
Date and shall continue for so long as Data Recipient retains the LOS,
unless sooner terminated as set forth in this Agreement. Data Provider
hereby reserves the right to withdraw from the Study at any time in its sale
discretion.
b. Termination by Data Recipient. Data Recipient may terminate this
agreement at any time by notifying the Data Provider and returning or
destroying the LOS.
c. Termination by Data Provider. Data Provider may terminate this
agreement at any time by notifying Data Recipient.
d. For Breach. Data Provider shall provide written notice to Data Recipient
within ten (10) days of any determination that Data Recipient has
breached a material term of this Agreement. Data Provider shall afford
Data Recipient an opportunity to cure said alleged material breach upon
mutually agreeable terms. Failure to agree on mutually agreeable terms
for cure within thirty (30) days shall be grounds for the immediate

www.manaraa.com

176

termination of this Agreement by Data Provider.
e. Effect of Termination. Sections 1,4,5, 6(e) and 7 of this Agreement shall
survive any termination of this Agreement under subsections c or d.
4. Miscellaneous.
a. Change in Law. The parties agree to negotiate in good faith to amend this
Agreement to comport with changes in federal law that materially alter
either or both parties' obligations under this Agreement. Provided
however, that if the parties are unable to agree to mutually acceptable
amendment(s) by the compliance date of the change in applicable law or
regulations, either Party may terminate this Agreement as provided in
section 6.
b. No Third Party Beneficiaries. Nothing in this Agreement shall confer
upon any person other than the parties and their respective successors or
assigns, any rights, remedies, obligations, or liabilities whatsoever.
c. Counterparts. This Agreement may be executed in one or more
counterparts, each of which shall be deemed an original, but all of which
together shall constitute one and the same instrument.
d. Headings. The headings and other captions in this Agreement are for
convenience and reference only and shall not be used in interpreting,
construing or enforcing any of the provisions of this Agreement.
IN WITNESS WHEREOF, each of the undersigned has caused this Agreement to be duly
executed in its name and on its behalf. July 23, 2009.

DATA PROVIDER DATA RECEPIANT
Signed: Susan Gellatly Signed: Lawrence E Day
Print Name: Susan Gellatly Print Name: Lawrence E. Day
Print Title: Director, Boeing IT Print Title: Software Analyst

www.manaraa.com

177

Curriculum Vitae

LAWRENCE E. DAY, PMP, CSQA

44624 SE 159th Street
North Bend, WA 98045

(425) 865-1022 (Office) (425) 445-8938 (Cell)
Email: lawrence.e.day@boeing.com

Career Objective
Obtain a position that is both technically and administratively challenging and provides
the opportunity to contribute to the economic and technical success of the enterprise.

Fourteen years of embedded software engineering development (all life cycle phases
from algorithm simulation through development, test, competition fly-off, production and
customer support). Sixteen years of exceptionally broad based software, systems
engineering, and program management experience in a variety of strategic corporate
disciplines. Ten years in IT computing and S/W development project management.
Strong engineering/technical background with extensive program and project
management experience. Demonstrated ability to manage large projects, budgets and
schedules in cross-functional technical environment. Outstanding leadership, problem-
solving, communication and organizational skills with a record of successfully
motivating diverse teams to high efficiency levels.

Technical specialty areas include the following:

 Lean+ (VSM Coach, 6-Sigma
Green Belt)

 S/W Engineering

 S/W Inspections (Fagan, Gilb)

 Systems Engineering
 SEI CMM/CMMI Metrics: Goal/Question/Metrics

(GQM)
 Macroscope S/W Development

Methodology
 Government S/W Development

Methodologies (Military & FAA)
 Requirements Management Technical Sub-Contract Mgmt
 Structured Analysis/Structured

Design
 Object-Oriented Analysis & Design

 Engineering/Computing Project
Mgmt

 S/W Quality Assurance

 Process Management, Design and
Implementation

 Software Engineering

 Radar Engineering

 Software and Documentation
Configuration Management

www.manaraa.com

178

Education/Certification:
ω Certified Project Management Professional (PMP 18442)
ω Certified S/W Quality Analyst (CSQA 2050)
ω ITIL Certified
ω BS Electrical Engineer - 1969
ω MBA (Technology/Engineering Management) - 1988
ω Th.D – 2001
ω Ph.D. in Information Systems Management - 2011

CAREER HISTORY & HIGHLIGHTS

THE BOEING COMPANY – PROGRAM AND SYSTEMS ENGINEERING
MANAGEMENT

As INTERNAL SERVICES SYSTEMS (ISS) QUALITY AND CONTROL QUALITY

AND METRICS ANALYST (2005 - Present) Boeing IT
Requested to lead the Boeing IT Internal Services Systems (ISS) Metrics Team to

develop common metrics to track organizational improvement. Developed metrics
analysis approach that was adopted by Boeing IT Quality and Effort & Schedule
Variance Sub-Teams. The ISS sister organization of Finance Systems and the Vice-
President level organization of Business Systems, which includes Finance and ISS, have
implemented metrics analysis programs based on Lawrence’s model. The Boeing SSG IT
Partners monthly status meetings are also implementing a metrics dashboard based on
Lawrence’s analysis. As the Subject Matter Expert (SME) in Quality, Process
Improvement, and Measurement/Metrics in the Engineering Operations and Technology
Information Systems (EO&T IS) on Lawrence led them through the process of achieving
a CMMI Lvl III appraisal. Lawrence is a certified Independent QA Audit auditor and has
worked with the EPES tool. Lawrence was requested to be the Process Improvement
Focal for the EO&T IS organization. He chaired weekly SEPG meetings that focused
AD&S and metrics changes into the EO&T IS organization and acted as a
communications vehicle to common process implementations.

Lawrence is the ISS rep to the Q&C Measurement Team and is the chairman of
the Quality Sub-Team and the Agile Sub-Team as well as a member of the Effort and
Schedule Variance Sub-Team. Lawrence is a Boeing certified Value Stream Mapping
coach who led or coached thirteen VSMs and is a Six-Sigma Green Belt. A Paper on S/W
Metrics was published in the QAI Journal for July 09 (Vol. 23, No. 3, p12-19).

As CUSTOMER ACCESS PROGRAM (CAP) SYSTEMS ENGINEER (2003-2005)
Boeing IT

Requested to join the Customer Access Program (CAP) as the Request Broker
manager. Completed a 6 month technical feasibility study that identified the Request
Broker requirements for interfacing with the Boeing portal. Developed Technical
Performance Measurements (TPMs) and Affordability criteria. Responsible for the

www.manaraa.com

179

development and implementation of the Requirements Management Plan and CAP
Product Systems Engineering deliverables.

As IT e-COMMERCE PROJECT MANAGER (2000-2003) Shared Services Group
(SSG)

Requested to join the Boeing Desktop Product Management group to develop and
manage integrated workflow applications (web/database). This workflow application
approach includes technical process development and implementation, s/w development,
and database design. These projects affected all of Boeing’s major business Groups and
the workflow processes implemented included Technology Management Labs, Year 2000
User Commercial Off The Shelf (UCOTS), Windows 2000 Desktop Requirements
Database, Windows 2000 Application Migration Status, Logistics & Support PC Process
Repository, Computing Inventory Information Management, Leased Equipment
Management System, Web Change Request Management, Windows 2000 OPS Server
Deployment Status, Windows 2000 Enterprise Program, Enhanced POD (ePOD), and
S/W License Renewal.

Demonstrated the leadership required to set up project teams, perform successful
cross-functional coordination, manage requirements, implement S/W development
methodologies and execute all project management disciplines to bring these projects to a
successful conclusion, including sub-contract management.

As YEAR 2000 IT MANAGER (1998-2000) Shared Services Group

Requested to join the Boeing Year 2000 (Y2K) project and manage the User
Commercial Off The Shelf (UCOTS) infrastructure effort for Y2k for all of Boeing.
Designed and implemented the UCOTS process. Designed and developed an integrated
workflow application (web/database) that implemented the agreed to process across the
entire company. Set up project teams, staffed and executed various efforts to bring the
Y2k effort to a successful conclusion. Effort spanned Boeing worldwide and included all
areas of IS delivery systems from mainframes to desktops and everything in between. All
the business Groups within the company used the UCOTS application, for Y2k activity,
as well as to display Y2k product readiness status. Y2k was a top priority project in
Boeing. Caught up from a seven month backlog and successfully completed the project in
a year and a half by developing and implementing a web based UCOTS automatic
process for collection and dispositioning of Y2k UCOTS product status requests. Task
was completed using a group of three people, instead of nine, thus saving Boeing nine
man-years of effort. Designated as the Boeing representative at the Y2k Platinum
Consortium meetings.

As IT MANAGER (1995-1998) Information and Support Services

Selected to perform computing and S/W management of the Technology Services
Distributed Integration Test Facility (DITF). Developed technical processes for managing
the $22.7 million computing and S/W capital/expense plan for DITF that encompassed 20
different organizations. Developed the server layered software blockpoint methodology
and implemented the process for Client/Server Blockpoints. Managed DITF lab,

www.manaraa.com

180

Client/Server operating system and layered software blockpoint, UNIX and X-Windows
consultants, and electronic software distribution.

 Developed a Working Together Agreement with Compaq that saved, and continues to
save, Boeing $1M a year.

 Provided infrastructure support for enterprise Tier I (desktop) and II (server)
computing.

 Led development and implementation of processes to increase Client/Server
blockpoint quality and dependability.

 Implemented computing process for equipment purchases, saving an average of 2
weeks flow time and 10 man-hours per approved Request for Equipment (RFE).

 Developed an integrated workflow application (web/database) for DITF Lab
management and resource allocations.

Chairman of the Boeing Software Quality Assurance Council.

As S/W DEVELOPMENT MGR (1992-1995) Computer Services/Commercial Airplane

Selected to manage software development, cross-functional management and
systems engineering for the 777 Automatic Test Equipment (ATE) software. Responsible
for Object Oriented Analysis and Design (HP/UX platform) using C++; program and
resource planning; product and task scheduling; software methodology development; and
project tracking.

 Successfully built and delivered on schedule the manufacturing ATE carts for the first
777 aircraft.

 Managed the development and implementation of an OOA/D methodology.
 Implemented a progress and status management communication methodology that

was developed by the rest of the program.
 Developed and managed the successful implementation of S/W Inspections in the

S/W development process (see conference presentations above).
 Chaired the 777 ATE Continuous Quality Improvement (CQI) Steering Committee.
 Grew technical team from 5 to 24 in 3 months while developing successful project

strategy and schedules.

As ENGINEERING MANAGER (1990-1992) Computer Services

Selected to manage approximately 40 software engineers and analysts as well as
serving as Software Quality Manager. Responsible for allocating Software Engineering
resources to various projects. Provided software expertise in real-time control systems
and other manufacturing operations. Served as charter member of the Boeing Embedded
Software Task Team (ESTT) and division spokesman for that team.

As SYSTEMS ENGINEERING MGR (1988-1990) Aerospace Company

Selected to manage 3 different Systems Engineering functions including
Command/Telemetry, Power and Databases. Tracked and oversaw projects; provided
both internal and external technical guidance, resource planning and cross-functional
coordination.

www.manaraa.com

181

 Developed database management methodology and brought systems engineering
database development under control.

 Developed coordinated database and delivery processes that crossed five
organizational boundaries.

 Generated phased approach to product implementation of system delivery
interrelationships that was adopted by the program.

 Performed an independent software audit of the Peace Shield program.

As PROGRAM MANAGER (1987-1988) Aerospace Company

Selected as a Program Manager to military and space contractor division with
responsibility for all aspects of an Artificial Intelligence development program concerned
with satellite autonomy in the "Star Wars" initiative. Managed staff of systems and S/W
engineering groups with cross-functional management over Material, Finance, Human
Resources and Contracts. Served as Software Development Manager for Phase I of a
multi-phase government procurement.

 Developed satellites that could operate with few ground controller direct commands
using elements of Artificial Intelligence.

 Used Structured Analysis/Design Methodology to manage System Requirements.

As TECH. SUBCONTRACT MGR (1985-1987) Aerospace Company

Selected to provide subcontract technical management of Software Engineering,
Systems Engineering and Test groups totaling 140 personnel.

 Engineering and contract Manager for the $200M Westinghouse Electric Corporation
(WEC) systems/hardware/software/documentation deliverables for Peace Shield
Communication, Command and Control System.

 Developed standard communications processes and conducted successful Critical
Design Reviews on hardware/software deliverables.

 Chosen as part of the Boeing/WEC team that did Manufacturing Availability Review
(MAR) on a Westinghouse plant in Puerto Rico.

 As Software Engineering Manager, developed, and delivered to the Air Force, a 1500
page software requirements document.

As S/W MANAGER (1982-1985) Military Aircraft Company

Promoted into S/W Engineering Management. Responsible for the approval, and
delivery to the customer, of the Westinghouse B-1B Radar Software (code and
documentation). Responsible for computing engineering management of the B-1B S/W
development labs and IS infrastructure.

 Brought Westinghouse software under control and got the software documentation off
the Secretary of Defense's list of top three B-1B problems.

 Managed the B1-B S/W Development environment.

As RADAR & S/W ENGINEER (1969-1982) Boeing & Westinghouse
Served as radar engineer and radar software engineer, prior to promotion into Boeing
management.

 Developed RADAR signal processing algorithmic simulations.

www.manaraa.com

182

 Developed RADAR signal processing and embedded operating system S/W.
 Supported deployment of Advanced Warning And Control System (AWACS) in

demonstrations and to the customer.
 Generated and maintained AWACS radar manufacturing testing S/W that saved

Boeing $11M.
 Generated a Value Engineering Change Proposal for AWACS radar S/W loads

that saved the Air Force $1.15M.

www.manaraa.com

183

CONFERENCE PRESENTATIONS AND PAPERS

Orlando Quality Assurance Institute Journal: “Software Metrics“. July 2009
(Vol. 23, No. 3, p12-19)

Seattle Boeing – Luxoft Technical Summit (BoLTS) October 2008
Presentation: “A Design Manufacturing Approach to Software
Development”

Chicago International IT Quality Assurance Conference April 2008
One Day Tutorial: “S/W Verification Testing Metrics”

Bilboa, SP QA Test 2007 October 2007
Tutorial: “S/W Verification Testing Metrics” (Doron Cherkovsky – Co-
Author)

London Quick (Lean) Decision Making July 2007
Presentation: “3D Earned Value: Lean Application of S/W Inspections for
Quality Project Decisions”

Orlando QAI Testing Conference November 2006
Tutorial: “S/W Verification Testing Metrics”

Bilboa, SP QA Test 2006 October 2006
Tutorial: “Agile S/W Inspections”

London Value Driven Planning Conference June 2006
“S/W Quality Value Prediction”

Orlando International IT Quality Assurance Conference April 2006
One Day Tutorial: “Agile S/W Inspections”

Tel Aviv SELA University April 2006
Multiple Courses: “Agile S/W Inspections”,
“Principles of Successful Software Projects”, “S/W Metrics”
SIGiST Keynote Address: “Using Verification Methods to Improve
Product Development”

Düsseldorf 6th ICSTEST International Conference on Software Testing April 2005
One Day Tutorial: “Principles of Successful Software Projects”

Spokane, WA Spokane Rotary February 2005
Keynote Speaker: “World Class Quality and the Culture of Blame”

Seattle Seattle Area S/W Quality Assurance Group January 2005
Presentation: “Use of Inspections As A Risk Management Tool”

Bilboa, SP ICSTEST-E November 2004
Keynote Speaker: “Successful Embedded Software Verification and
Testing: A Case Study”

Orlando International S/W Testing Conference October 2004
Keynote Speaker: “Using Verification Methods to Improve Product
Development”
One Day Tutorial: “Principles of Successful Software Projects”

Madrid 8th International Software Re-Use Conference July 2004
Presentation: “Requirements Re-Use in the IT Business Process WEB
Implementation Product Family”

London Evolutionary Deployment (EVO) Engineering Conference June 2004

www.manaraa.com

184

Presentation: “EVO e-Implementation of Organizational Business
Processes”

Orlando International Conference on Effective Methods for IT Quality May 2004
One Day Tutorial: “Principles of Successful Software Projects”

Krakow, PL East European Conference on Systems and Software April 2004
Keynote Speaker: “World Class Quality and the Culture of Blame”

Düsseldorf 5th ICSTEST International Conference on Software Testing April 2004
Keynote Speaker: “The Boeing-Approach to (Independent) Software
Verification and Validation”

Amsterdam EuroSTAR 2003 December 2003
Presentation: “Use of Inspections As A Risk Management Tool”

Tuloca, México El Instituto Tecnológico y de Estudios Superiores de Monterrey
October 2003
Presentation: “World Class Quality and the Culture of Blame”

Minneapolis PSQT/PSTT North September 2003
Presentation: “Use of Inspections for Product and Process Improvement”

London Systems Architecture Engineering Conference June 2003
Presentation: “Data-Driven Workflow Applications Architecture”

London Co-Teach Testing Master Class June 2003
Orlando International Conference on Effective Methods for IT Quality May 2003

Double Session Presentation: “Process Quality Assurance Using the
AUTOmatic PROcess DrivenTask Execution And Management
(AUTOPROD TEAM) Approach”

Cologne 4th ICSTEST International Conference on Software Testing April 2003
Presentation: “Use of Inspections As A Risk Management Tool”

London Co-Teach Testing Master Class March 2003
London Systems/Requirements Engineering Conference June 2002

Presentation: “S/W and Systems Requirements Management Using
Inspections”

Orlando International Conference on Effective Methods for IT Quality April 2002
One Day Tutorial: “Process Quality Assurance Using the AUTOmatic
PROcess Driven Task Execution And Management (AUTOPROD TEAM)
Approach”

Düsseldorf 3rd ICSTEST International Conference on Software Testing April 2002
Presentation: “Use of Inspections As A Risk Management Tool”

Seattle Seattle Area S/W Quality Assurance Group Sept. 2001
Presentation: “AUTOmatic PROcess Driven Task Execution And
Management (AUTOPROD TEAM)”

London Competitive Systems and S/W Engineering Conference June 2001
Presentation: “Process Implementation Using A Competitive and Quality
S/W Engineering Approach”

Seattle IT E-Commerce Applications Conference June 2001
Presentation: “Process Implementation Via the Web Ensures Quality and
Data Integrity”

Orlando International Information Technology Quality Conference April 2001

www.manaraa.com

185

Presentation: “Process Embedding in Web Applications – Ensuring
Quality and Data Integrity”

Kansas City E-Commerce Applications Conference June 2000
Presentation: “Successful Intranet Usage for Technical Transactions”

Seattle Quarterly Y2k Platinum Meeting July 1998
Presentation: “Y2k Supplier Product Readiness Management – Year 2000
Ready”

www.manaraa.com

186

ANCILLARY BUSINESS EXPERIENCE

As Aircraft Leasing Business Owner and Flight Instructor (1980 to Present)

Past owner of an aircraft leasing business. Give flight instruction. Past President and
Treasurer of the Boeing Employees Flying Association (BEFA) with 400 members,
approx. 18 aircraft, $1M budget and $750K balance sheet. As a Board member of a
highly government (federal, state and local) regulated non-profit organization with $1m+
budget and a 400+ membership I developed strategic business plans, implemented yearly
budgets, interfaced with government regulatory personnel, committed to business and
financial contracts, managed staff and provided organizational leadership.

Current FAA ratings include:

Pilot Certificate:
• Commercial/Instrument
• Single engine Land and Sea
• Multi-engine Land

Flight Instructor Certificate:
• Single Engine
• Multi-Engine
• Instrument

Ground Instructor Certificate:
• Advanced
• Instrument

As Board Member of the Boeing Employees Flying Association – BEFA

ω President 1987-1988
ω Treasurer 1999-2005

